Repository logo
 
Publication

Affective computing databases: in-depth analysis of systematic reviews and surveys

dc.contributor.authorMigueis Vaz Martins, Pedro Jorge
dc.contributor.authorRodrigues, Joao
dc.contributor.authorCardoso, Pedro
dc.date.accessioned2025-07-14T09:03:23Z
dc.date.available2025-07-14T09:03:23Z
dc.date.issued2025-04
dc.description.abstractThe field of affective computing (AffC) is a hot research topic, where keeping track of the latest state-of-the-art can be cumbersome. Probably, due to this, a huge increase in publications of systematic reviews or surveys (SRoS) is appearing in different journals, covering various aspects such as databases, methods, and overall perspectives. Nevertheless, this increase does not mean more and better information, or at least a clarification of information. The present study analyses 10 SRoS, all published within the last 4 years, focusing only on covering AffC databases, with emphasis on collections where emotion or sentiment can be extracted from the body. It was observed that, depending on the SRoS, different information was presented, sometimes with missing or discrepant data, due to lack of information or by the way it was interpreted. As a result, from those 10 SRoS, a total of 111 different databases were analyzed, which were segmented into three groups (tiers, i.e., citation-based categorization) by their relative importance of appearance in the SRoS. In addition, it is proposed a taxonomy with a minimum set of characterizing information that researchers should address when publishing or reviewing databases.eng
dc.description.sponsorshipUIDP/04516/2020
dc.identifier.doi10.1109/taffc.2024.3507289
dc.identifier.eissn2371-9850
dc.identifier.issn1949-3045
dc.identifier.urihttp://hdl.handle.net/10400.1/27393
dc.language.isoeng
dc.peerreviewedyes
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relationNOVA Laboratory for Computer Science and Informatics
dc.relation.ispartofIEEE Transactions on Affective Computing
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectAffective computing
dc.subjectAffective computing databases
dc.subjectEmotion dataset
dc.subjectSentiment dataset
dc.titleAffective computing databases: in-depth analysis of systematic reviews and surveyseng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleNOVA Laboratory for Computer Science and Informatics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04516%2F2020/PT
oaire.citation.issue2
oaire.citation.titleIEEE Transactions on Affective Computing
oaire.citation.volume16
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameMigueis Vaz Martins
person.familyNameRodrigues
person.familyNameCardoso
person.givenNamePedro Jorge
person.givenNameJoao
person.givenNamePedro
person.identifier.ciencia-id8A19-98F7-9914
person.identifier.ciencia-id5F10-1C37-FE45
person.identifier.orcid0000-0002-8819-3243
person.identifier.orcid0000-0002-3562-6025
person.identifier.orcid0000-0003-4803-7964
person.identifier.ridHKF-6445-2023
person.identifier.ridG-6405-2013
person.identifier.scopus-author-id55807461600
person.identifier.scopus-author-id35602693500
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication41a140ef-1573-4bf7-9603-e5ad5e0aacdf
relation.isAuthorOfPublication683ba85b-459c-4789-a4ff-a4e2a904b295
relation.isAuthorOfPublication62bebc54-51ee-4e35-bcf5-6dd69efd09e0
relation.isAuthorOfPublication.latestForDiscovery41a140ef-1573-4bf7-9603-e5ad5e0aacdf
relation.isProjectOfPublication1122b3d4-9740-4ad7-9abf-86bb7a3615da
relation.isProjectOfPublication.latestForDiscovery1122b3d4-9740-4ad7-9abf-86bb7a3615da

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Affective_Computing_Databases_In-Depth_Analysis_of_Systematic_Reviews_and_Surveys.pdf
Size:
3.09 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections