Name: | Description: | Size: | Format: | |
---|---|---|---|---|
493.24 KB | Adobe PDF | |||
134 KB | Adobe PDF |
Advisor(s)
Abstract(s)
Introduction: The establishment of prognostic models for Crohn's disease [CD] is highly desirable, as they have the potential to guide physicians in the decision-making process concerning therapeutic choices, thus improving patients' health and quality of life. Our aim was to derive models for disabling CD and reoperation based solely on clinical/demographic data. Methods: A multicentric and retrospectively enrolled cohort of CD patients, subject to early surgery or immunosuppression, was analysed in order to build Bayesian network models and risk matrices. The final results were validated internally and with a multicentric and prospectively enrolled cohort. Results: The derivation cohort included a total of 489 CD patients [64% with disabling disease and 18% who needed reoperation], while the validation cohort included 129 CD patients with similar outcome proportions. The Bayesian models achieved an area under the curve of 78% for disabling disease and 86% for reoperation. Age at diagnosis, perianal disease, disease aggressiveness and early therapeutic decisions were found to be significant factors, and were used to construct user-friendly matrices depicting the probability of each outcome in patients with various combinations of these factors. The matrices exhibit good performance for the most important criteria: disabling disease positive post-test odds = 8.00 [2.72-23.44] and reoperation negative post-test odds = 0.02 [0.00-0.11]. Conclusions: Clinical and demographical risk factors for disabling CD and reoperation were determined and their impact was quantified by means of risk matrices, which are applicable as bedside clinical tools that can help physicians during therapeutic decisions in early disease management.
Description
Keywords
Inflammatory-bowel-disease Intestinal resection Bayesian networks Predictors Metaanalysis Package Care
Citation
Publisher
Oxford University Press