Name: | Description: | Size: | Format: | |
---|---|---|---|---|
1.83 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Magnetic iron oxide nanoparticles (MIONPs) play a major role in the emerging fields of nanotechnology to facilitate rapid advancements in biomedical and industrial platforms. The superparamagnetic properties of MIONPs and their environment friendly synthetic methods with well-defined particle size have become indispensable to obtain their full potential in a variety of applications ranging from cellular to diverse areas of biomedical science. Thus, the broadened scope and need for MIONPs in their demanding fields of applications required to be highlighted for a comprehensive understanding of their state-of-the-art. Many synthetic methods, however, do not entirely abolish their undesired cytotoxic effects caused by free radical production and high iron dosage. In addition, the agglomeration of MIONPs has also been a major problem. To alleviate these issues, suitable surface modification strategies adaptive to MIONPs has been suggested not only for the effective cytotoxicity control but also to minimize their agglomeration. The surface modification using inorganic and organic polymeric materials would represent an efficient strategy to utilize the diagnostic and therapeutic potentials of MIONPs in various human diseases including cancer. This review article elaborates the structural and magnetic properties of MIONPs, specifically magnetite, maghemite and hematite, followed by the important synthetic methods that can be exploited for biomedical approaches. The in vivo cytotoxic effects and the possible surface modifications employed to eliminate the cytotoxicity thereby enhancing the nanoparticle efficacy are also critically discussed. The roles and applications of surface modified MIONPs in medical and industrial platforms have been described for the benefits of global well-being.
Description
Keywords
Magnetic iron oxide nanoparticles (MIONPs) Synthetic methods Surface modifcation Cytotoxicity Applications
Citation
BMC Materials. 2019 Nov 19;1(1):2
Publisher
BMC