Repository logo
 
Publication

Modular dynamic neural network: a continual learning architecture

dc.contributor.authorTurner, Daniel
dc.contributor.authorCardoso, Pedro
dc.contributor.authorRodrigues, João
dc.date.accessioned2022-01-10T15:13:00Z
dc.date.available2022-01-10T15:13:00Z
dc.date.issued2021-12-18
dc.date.updated2021-12-23T15:06:58Z
dc.description.abstractLearning to recognize a new object after having learned to recognize other objects may be a simple task for a human, but not for machines. The present go-to approaches for teaching a machine to recognize a set of objects are based on the use of deep neural networks (DNN). So, intuitively, the solution for teaching new objects on the fly to a machine should be DNN. The problem is that the trained DNN weights used to classify the initial set of objects are extremely fragile, meaning that any change to those weights can severely damage the capacity to perform the initial recognitions; this phenomenon is known as catastrophic forgetting (CF). This paper presents a new (DNN) continual learning (CL) architecture that can deal with CF, the modular dynamic neural network (MDNN). The presented architecture consists of two main components: (a) the ResNet50-based feature extraction component as the backbone; and (b) the modular dynamic classification component, which consists of multiple sub-networks and progressively builds itself up in a tree-like structure that rearranges itself as it learns over time in such a way that each sub-network can function independently. The main contribution of the paper is a new architecture that is strongly based on its modular dynamic training feature. This modular structure allows for new classes to be added while only altering specific sub-networks in such a way that previously known classes are not forgotten. Tests on the CORe50 dataset showed results above the state of the art for CL architectures.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationApplied Sciences 11 (24): 12078 (2021)pt_PT
dc.identifier.doi10.3390/app112412078pt_PT
dc.identifier.issn2076-3417
dc.identifier.urihttp://hdl.handle.net/10400.1/17460
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherMDPIpt_PT
dc.relationLaboratory of Robotics and Engineering Systems
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/pt_PT
dc.subjectContinual learningpt_PT
dc.subjectNeural networkspt_PT
dc.subjectCatastrophic forgettingpt_PT
dc.subjectObject recognitionpt_PT
dc.titleModular dynamic neural network: a continual learning architecturept_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleLaboratory of Robotics and Engineering Systems
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50009%2F2020/PT
oaire.citation.issue24pt_PT
oaire.citation.startPage12078pt_PT
oaire.citation.titleApplied Sciencespt_PT
oaire.citation.volume11pt_PT
oaire.fundingStream6817 - DCRRNI ID
person.familyNameTurner
person.familyNameCardoso
person.familyNameRodrigues
person.givenNameDaniel
person.givenNamePedro
person.givenNameJoao
person.identifier.ciencia-id5F10-1C37-FE45
person.identifier.ciencia-id8A19-98F7-9914
person.identifier.orcid0000-0002-1198-9841
person.identifier.orcid0000-0003-4803-7964
person.identifier.orcid0000-0002-3562-6025
person.identifier.ridG-6405-2013
person.identifier.scopus-author-id35602693500
person.identifier.scopus-author-id55807461600
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationad5a3f8c-533d-4dd8-95a5-0385df6441f2
relation.isAuthorOfPublication62bebc54-51ee-4e35-bcf5-6dd69efd09e0
relation.isAuthorOfPublication683ba85b-459c-4789-a4ff-a4e2a904b295
relation.isAuthorOfPublication.latestForDiscovery683ba85b-459c-4789-a4ff-a4e2a904b295
relation.isProjectOfPublication63f1f0ee-a2d4-4055-8a65-111048e05495
relation.isProjectOfPublication.latestForDiscovery63f1f0ee-a2d4-4055-8a65-111048e05495

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-11-12078-v2.pdf
Size:
2.49 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections