Repository logo
 
Publication

Object segregation and local gist vision using low-level geometry

dc.contributor.authorMartins, J. C.
dc.contributor.authorRodrigues, J. M. F.
dc.contributor.authordu Buf, J. M. H.
dc.date.accessioned2011-12-06T13:40:49Z
dc.date.available2011-12-06T13:40:49Z
dc.date.issued2009
dc.date.updated2011-12-05T16:58:21Z
dc.description.abstractMulti-scale representations of lines, edges and keypoints on the basis of simple, complex, and end-stopped cells can be used for object categorisation and recognition. These representations are complemented by saliency maps of colour, texture, disparity and motion information, which also serve to model extremely fast gist vision in parallel with object segregation. We present a low-level geometry model based on a single type of self-adjusting grouping cell, with a circular array of dendrites connected to edge cells located at several angles. Different angles between active edge cells allow the grouping cell to detect geometric primitives like corners, bars and blobs. Such primitives forming different configurations can then be grouped to identify more complex geometry, like object shapes, without much additional effort. The speed of the model permits it to be used for fast gist vision, assuming that edge cells respond to transients in colour, texture, disparity and motion. The big advantage of combining this information at a low level is that local (object) gist can be extracted first, ie, which types of objects are about where in a scene, after which global (scene) gist can be processed at a semantic level.
dc.identifier.citationMartins, J.C.; Rodrigues, J.; du Buf, J.M.H. Object segregation and local gist vision using low-level geometry, Trabalho apresentado em ECVP 2009, In Proc. 32th European Conference on Visual Perception (ECVP2009) , Regensburg, Germany, 2009.por
dc.identifier.otherAUT: JRO00913; DUB00865;
dc.identifier.urihttp://hdl.handle.net/10400.1/881
dc.language.isoengpor
dc.peerreviewednopor
dc.subjectVisão humanapor
dc.titleObject segregation and local gist vision using low-level geometrypor
dc.typeconference object
dspace.entity.typePublication
person.familyNameRodrigues
person.familyNamedu Buf
person.givenNameJoao
person.givenNameHans
person.identifier.ciencia-id8A19-98F7-9914
person.identifier.orcid0000-0002-3562-6025
person.identifier.orcid0000-0002-4345-1237
person.identifier.ridM-5125-2013
person.identifier.scopus-author-id55807461600
person.identifier.scopus-author-id6604075916
rcaap.rightsopenAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication683ba85b-459c-4789-a4ff-a4e2a904b295
relation.isAuthorOfPublicationcfad5636-2c77-4db0-a3a0-d7eb97ce6bee
relation.isAuthorOfPublication.latestForDiscoverycfad5636-2c77-4db0-a3a0-d7eb97ce6bee

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
652_ECVP2009Digitalizado.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections