Repository logo
 
Publication

Air pollution forecasting using autoencoders: a classification-based prediction of NO2, PM10, and SO2 concentrations

datacite.subject.sdg03:Saúde de Qualidade
datacite.subject.sdg11:Cidades e Comunidades Sustentáveis
datacite.subject.sdg13:Ação Climática
dc.contributor.authorRodríguez-García, María Inmaculada
dc.contributor.authorCarrasco-García, María Gema
dc.contributor.authorFernández, Paloma Rocío Cubillas
dc.contributor.authorRibeiro, Conceição
dc.contributor.authorCardoso, Pedro
dc.contributor.authorTurias, Ignacio. J.
dc.date.accessioned2026-01-15T13:48:50Z
dc.date.available2026-01-15T13:48:50Z
dc.date.issued2025-11-10
dc.description.abstractThis study aims to evaluate and compare the performance of Autoencoders (AEs) and Sparse Autoencoders (SAEs) in forecasting the next-hour concentration levels of various air pollutants—specifically NO2(t + 1), PM10(t + 1), and SO2(t + 1)—in the Bay of Algeciras, a highly complex region located in southern Spain. Hourly data related to air quality, meteorological conditions, and maritime traffic were collected from 2017 to 2019 across multiple monitoring stations distributed throughout the bay, enabling the analysis of diverse forecasting scenarios. The output variable was segmented into four distinct, non-overlapping quartiles (Q1–Q4) to capture different concentration ranges. AE models demonstrated greater accuracy in predicting moderate pollution levels (Q2 and Q3), whereas SAE models achieved comparable performance at the lower and upper extremes (Q1 and Q4). The results suggest that stacking AE layers with varying degrees of sparsity—culminating in a supervised output layer—can enhance the model’s ability to forecast pollutant concentration indices across all quartiles. Notably, Q4 predictions, representing peak concentrations, benefited from more complex SAE architectures, likely due to the increased difficulty associated with modelling extreme values.eng
dc.identifier.doi10.3390/nitrogen6040101
dc.identifier.issn2504-3129
dc.identifier.urihttp://hdl.handle.net/10400.1/28106
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relation.ispartofNitrogen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectDeep learning
dc.subjectAutoencoders
dc.subjectAir quality forecasting
dc.subjectNO2
dc.subjectSO2
dc.subjectPM10
dc.subjectConcentration forecasting
dc.titleAir pollution forecasting using autoencoders: a classification-based prediction of NO2, PM10, and SO2 concentrationseng
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue4
oaire.citation.startPage101
oaire.citation.titleNitrogen
oaire.citation.volume6
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameRibeiro
person.familyNameCardoso
person.givenNameConceição
person.givenNamePedro
person.identifier2601393
person.identifier.ciencia-id931B-F351-0F98
person.identifier.ciencia-id5F10-1C37-FE45
person.identifier.orcid0000-0003-0185-3200
person.identifier.orcid0000-0003-4803-7964
person.identifier.ridK-6015-2017
person.identifier.ridG-6405-2013
person.identifier.scopus-author-id57194438789
person.identifier.scopus-author-id35602693500
relation.isAuthorOfPublicationfa51624b-78ab-4e5a-a7c5-a84f5a01dceb
relation.isAuthorOfPublication62bebc54-51ee-4e35-bcf5-6dd69efd09e0
relation.isAuthorOfPublication.latestForDiscoveryfa51624b-78ab-4e5a-a7c5-a84f5a01dceb

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nitrogen-06-00101.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections