Repository logo
 
Publication

Multimodal sentiment classifier framework for different scene contexts

dc.contributor.authorCardoso, Pedro
dc.contributor.authorRodrigues, Joao
dc.contributor.authorde Matos, Nelson Manuel da Silva
dc.date.accessioned2024-10-24T13:47:43Z
dc.date.available2024-10-24T13:47:43Z
dc.date.issued2024-08-12
dc.description.abstractSentiment analysis (SA) is an effective method for determining public opinion. Social media posts have been the subject of much research, due to the platforms’ enormous and diversified user bases that regularly share thoughts on nearly any subject. However, on posts composed by a text–image pair, the written description may or may not convey the same sentiment as the image. The present study uses machine learning models for the automatic sentiment evaluation of pairs of text and image(s). The sentiments derived from the image and text are evaluated independently and merged (or not) to form the overall sentiment, returning the sentiment of the post and the discrepancy between the sentiments represented by the text–image pair. The image sentiment classification is divided into four categories—“indoor” (IND), “man-made outdoors” (OMM), “non-man-made outdoors” (ONMM), and “indoor/outdoor with persons in the background” (IOwPB)—and then ensembled into an image sentiment classification model (ISC), that can be compared with a holistic image sentiment classifier (HISC), showing that the ISC achieves better results than the HISC. For the Flickr sub-data set, the sentiment classification of images achieved an accuracy of 68.50% for IND, 83.20% for OMM, 84.50% for ONMM, 84.80% for IOwPB, and 76.45% for ISC, compared to 65.97% for the HISC. For the text sentiment classification, in a sub-data set of B-T4SA, an accuracy of 92.10% was achieved. Finally, the text–image combination, in the authors’ private data set, achieved an accuracy of 78.84%.eng
dc.description.sponsorshipUIDP/04516/2020
dc.identifier.doi10.3390/app14167065
dc.identifier.issn2076-3417
dc.identifier.urihttp://hdl.handle.net/10400.1/26146
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relationNOVA Laboratory for Computer Science and Informatics
dc.relation.ispartofApplied Sciences
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectSentiment analysis
dc.subjectAffective computing
dc.subjectHuman-centered AI
dc.subjectMultimodal Sentiment Classifier
dc.titleMultimodal sentiment classifier framework for different scene contextseng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleNOVA Laboratory for Computer Science and Informatics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04516%2F2020/PT
oaire.citation.issue16
oaire.citation.startPage7065
oaire.citation.titleApplied Sciences
oaire.citation.volume14
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameCardoso
person.familyNameRodrigues
person.familyNamede Matos
person.givenNamePedro
person.givenNameJoao
person.givenNameNelson Manuel da Silva
person.identifier.ciencia-id5F10-1C37-FE45
person.identifier.ciencia-id8A19-98F7-9914
person.identifier.ciencia-idC71C-19F4-A193
person.identifier.orcid0000-0003-4803-7964
person.identifier.orcid0000-0002-3562-6025
person.identifier.orcid0000-0002-6263-5007
person.identifier.ridG-6405-2013
person.identifier.ridAAP-1169-2020
person.identifier.scopus-author-id35602693500
person.identifier.scopus-author-id55807461600
person.identifier.scopus-author-id57195062461
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication62bebc54-51ee-4e35-bcf5-6dd69efd09e0
relation.isAuthorOfPublication683ba85b-459c-4789-a4ff-a4e2a904b295
relation.isAuthorOfPublicatione8fd6121-7383-47ef-b228-a5c871939d14
relation.isAuthorOfPublication.latestForDiscovery62bebc54-51ee-4e35-bcf5-6dd69efd09e0
relation.isProjectOfPublication1122b3d4-9740-4ad7-9abf-86bb7a3615da
relation.isProjectOfPublication.latestForDiscovery1122b3d4-9740-4ad7-9abf-86bb7a3615da

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
applsci-14-07065-v2.pdf
Size:
7.03 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections