Browsing by Author "Barbosa, Catarina Filipa da Cruz"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Assessing the Impact of induced mesenchymal stem cells secretome in a 3D in vitro model of Parkinson's diseasePublication . Barbosa, Catarina Filipa da Cruz; Salgado, António; Nóbrega, ClévioParkinson’s disease (PD) is a complex disease characterized by a loss of dopaminergic (DA) neurons that leads to lifelong motor and non-motor impairments, still with no efficient treatment that can halt or revert its progression. Mesenchymal stem cells (MSCs) have been proposed as a promising therapeutic strategy to prevent dopaminergic neurons degeneration, particularly due to their paracrine action. Induced MSCs (iMSCs), obtained from induced pluripotent stem cells (iPSCs) differentiation, present an advantageous cell source for obtaining large amounts of secretome due to their superior proliferative capacity. In this project, we aimed to (1) develop a 3D in vitro model for the study of PD, (2) compare the long-term culture of iMSCs in either a commercial serum-free (SF) medium or a human platelet lysate (hPL) supplemented medium, (3) compare the effects of secretome from iMSCs expanded in different media and from early and late passages on dopaminergic differentiation, and (4) compare the effects of these secretomes on neuroprotection of a 3D in vitro model of PD. Results showed that the developed 3D collagen model demonstrated a robust network of neurons, that, when challenged with a toxin, resulted in a suitable PD model. hPL supplementation induces a higher proliferative capacity and lower levels of replicative senescence of iMSCs. The proteomic analysis reveals a secretory profile similar between iMSCs cultured in these two media, with a smaller portion of proteins that could be relevant for neuroregenerative processes being differentially expressed between them. Secretome from early passage iMSCs expanded in hPL supplemented medium had a positive impact on dopaminergic differentiation that other secretomes. The impact of these secretomes on the developed 3D model of PD did not show differences. Results show that the modulation of iMSCs secretome through expansion in different media and collection at different cell passages can influence therapeutic potential for PD.