Browsing by Author "Bringela, A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Examination of the cytotoxic and embryotoxic potential and underlying mechanisms of next-generation synthetic trioxolane and tetraoxane antimalarialsPublication . Copple, I. M.; Mercer, A. E.; Firman, J.; Donegan, G.; Herpers, B.; Wong, M. H.; Chadwick, J.; Bringela, A.; Cristiano, Maria Lurdes Santos; Van De Water, B.; Ward, Stephen A.; O'Neill, Paul M.; Park, B. K.Semisynthetic artemisinin-based therapies are the first-line treatment for P. falciparum malaria, but next-generation synthetic drug candidates are urgently required to improve availability and respond to the emergence of artemisinin-resistant parasites. Artemisinins are embryotoxic in animal models and induce apoptosis in sensitive mammalian cells. Understanding the cytotoxic propensities of antimalarial drug candidates is crucial to their successful development and utilization. Here, we demonstrate that, similarly to the model artemisinin artesunate (ARS), a synthetic tetraoxane drug candidate (RKA182) and a trioxolane equivalent (FBEG100) induce embryotoxicity and depletion of primitive erythroblasts in a rodent model. We also show that RKA182, FBEG100 and ARS are cytotoxic toward a panel of established and primary human cell lines, with caspase-dependent apoptosis and caspase-independent necrosis underlying the induction of cell death. Although the toxic effects of RKA182 and FBEG100 proceed more rapidly and are relatively less cell-selective than that of ARS, all three compounds are shown to be dependent upon heme, iron and oxidative stress for their ability to induce cell death. However, in contrast to previously studied artemisinins, the toxicity of RKA182 and FBEG100 is shown to be independent of general chemical decomposition. Although tetraoxanes and trioxolanes have shown promise as next-generation antimalarials, the data described here indicate that adverse effects associated with artemisinins, including embryotoxicity, cannot be ruled out with these novel compounds, and a full understanding of their toxicological actions will be central to the continuing design and development of safe and effective drug candidates which could prove important in the fight against malaria.
- Peroxides with antiplasmodial activity inhibit proliferation of Perkinsus olseni, the causative agent of Perkinsosis in bivalvesPublication . Araujo, Nuna C. P.; Afonso, Ricardo; Bringela, A.; Cancela, Leonor; Cristiano, Maria Lurdes Santos; Leite, RicardoPerkinsus olseni, the causative agent of Perkinsosis, can drastically affect the survival of target marine mollusks, with dramatic economic consequences for aquaculture. P. olseni is a member of the Alveolata group, which also comprises parasites that are highly relevant for medical and veterinary sciences such as Plasmodium falciparum and Toxoplasma. P. olseni shares several unique metabolic pathways with those pathological parasites but is not toxic to humans. In this work, six antimalarially active peroxides, derived from the natural product artemisinin or synthetic trioxolanes, were synthesized and tested on P. olseni proliferation and survival. All peroxides tested revealed an inhibitory effect on P. olseni proliferation atmicromolar concentrations. The relevance of the peroxide functionality on toxicity and the effect of Fe(II)-intracellular concentration on activity were also evaluated. Results demonstrated that the peroxide functionality is the toxofore and intracellular iron concentration also proved to be a crucial co-factor on the activation of peroxides in P. olseni. These data points to a mechanismof bioactivation in P. olseni sharing similaritieswith the one proposed in P. falciparumparasites. Preliminary studies on bioaccumulation were conducted using fluorescent-labeled peroxides. Results show that synthetic trioxolanes tend to accumulate on a vacuolewhile the labeled artemisinin accumulates in the cytoplasm. Preliminary experiments on differential genes expression associated to Fe(II) transport protein (Nramp) and calcium transport protein (ATP6/SERCA) were also conducted by qPCR. Results point to a fourfold increase in expression of both genes upon exposure to trioxolanes and approximately twofold upon exposure to artemisinin derivatives. Data obtained in this investigation is relevant for better understanding of the biology of Perkinsus andmay also be important in the development of new strategies for Perkinsosis prevention and control.