Browsing by Author "Brodie, Juliet"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- A common terminology to unify research and conservation of coralline algae and the habitats they createPublication . Jardim, Victor L.; Grall, Jacques; Barros‐Barreto, M. Beatriz; Bizien, Anaëlle; Benoit, Thomas; Braga, Juan C.; Brodie, Juliet; Burel, Thomas; Cabrito, Andrea; Diaz‐Pulido, Guillermo; Gagnon, Patrick; Hall‐Spencer, Jason M.; Helias, Mathieu; Horta, Paulo Antunes; Joshi, Siddhi; Kamenos, Nick A.; Kolzenburg, Regina; Krieger, Erik C.; Legrand, Erwann; Page, Tessa M.; Peña, Viviana; Ragazzola, Federica; Rasmusson, Lina M.; Rendina, Francesco; Schubert, Nadine; Silva, João; Tâmega, Frederico T. S.; Tauran, Adeline; Burdett, Heidi L.Linguistic uncertainty is a prime source of uncertainty pervading ecology and conservation. Coralline algae are a widespread and diverse group of calcifying red macroalgae that underpin coastal ecosystem function and service provision. Recent increasing interest in coralline algae in the scientific literature has revealed a diverse but confusing terminology at organism to habitat scales. Coralline algal research and conservation are international and multidisciplinary, so there are geographic and disciplinary imbalances in research and conservation efforts. To reach consensus and reduce uncertainty, we propose a unified terminology. We review trends in cultural and scientific use of coralline algal terms and propose a system based on six morphologies: (1) attached, (2) free-living geniculate, (3) encrusting and free-living nongeniculate coralline algae, the latter either being (4) nucleated or (5) non-nucleated thalli or (6) fragments. We take inspiration from other coastal systems that have achieved consensus through umbrella terms, such as 'coral' and 'kelp', to accelerate global progress in coralline algal research and conservation. We characterise 14 coralline algae-dominated habitat global types, falling within seven functional groups, four biomes and four realms: (1) freshwater coralline streams; (2) coralline tide pools; (3) intertidal coralline rims and (4) turf; (5) coralline sea caves; (6) coral-algal reefs; (7) algal ridges; (8) coralligenous reefs; subtidal (9) carbonate crusts, (10) coralline barrens and (11) turf; and (12) articulith, (13) maerl and (14) rhodolith beds, which fall into the coralline algal bed functional group. We hope this unified terminology promotes data comparison, enables cross-boundary and cross-sector sharing of best practices, develops capacity for meta-analyses and improves conservation strategies.
- Non-indigenous seaweeds in the Northeast Atlantic Ocean, the Mediterranean Sea and Macaronesia: a critical synthesis of diversity, spatial and temporal patternsPublication . van der Loos, Luna M.; Bafort, Quinten; Bosch, Samuel; Ballesteros, Enric; Bárbara, Ignacio; Berecibar, Estibaliz; Blanfuné, Aurélie; Bogaert, Kenny; Bouckenooghe, Silke; Boudouresque, Charles-François; Brodie, Juliet; Cecere, Ester; Díaz-Tapia, Pilar; Engelen, Aschwin; Gunnarson, Karl; Shabaka, Soha Hamdy; Hoffman, Razy; Husa, Vivian; Israel, Álvaro; Karremans, Mart; Knoop, Jessica; Le Gall, Line; Maggs, Christine A.; Mineur, Frédéric; Parente, Manuela; Perk, Frank; Petrocelli, Antonella; Rodríguez-Prieto, Conxi; Ruitton, Sandrine; Sansón, Marta; A Serrao, Ester; Sfriso, Adriano; Sjøtun, Kjersti; Stiger-Pouvreau, Valérie; Surget, Gwladys; Taşkin, Ergün; Thibaut, Thierry; Tsiamis, Konstantinos; Van De Weghe, Lotte; Verlaque, Marc; Viard, Frédérique; Vranken, Sofie; Leliaert, Frederik; De Clerck, OlivierEffective monitoring of non-indigenous seaweeds and combatting their effects relies on a solid confirmation of the non-indigenous status of the respective species. We critically analysed the status of presumed non-indigenous seaweed species reported from the Mediterranean Sea, the Northeast Atlantic Ocean and Macaronesia, resulting in a list of 140 species whose non-indigenous nature is undisputed. For an additional 87 species it is unclear if they are native or non-indigenous (cryptogenic species) or their identity requires confirmation (data deficient species). We discuss the factors underlying both taxonomic and biogeographic uncertainties and outline recommendations to reduce uncertainty about the non-indigenous status of seaweeds. Our dataset consisted of over 19,000 distribution records, half of which can be attributed to only five species (Sargassum muticum, Bonnemaisonia hamifera, Asparagopsis armata, Caulerpa cylindracea and Colpomenia peregrina), while 56 species (40%) are recorded no more than once or twice. In addition, our analyses revealed considerable variation in the diversity of non-indigenous species between the geographic regions. The Eastern Mediterranean Sea is home to the largest fraction of non-indigenous seaweed species, the majority of which have a Red Sea or Indo-Pacific origin and have entered the Mediterranean Sea mostly via the Suez Canal. Non-indigenous seaweeds with native ranges situated in the Northwest Pacific make up a large fraction of the total in the Western Mediterranean Sea, Lusitania and Northern Europe, followed by non-indigenous species with a presumed Australasian origin. Uncertainty remains, however, regarding the native range of a substantial fraction of non-indigenous seaweeds in the study area. In so far as analyses of first detections can serve as a proxy for the introduction rate of non-indigenous seaweeds, these do not reveal a decrease in the introduction rate, indicating that the current measures and policies are insufficient to battle the introduction and spread of non-indigenous species in the study area.
- Progress and future directions for seaweed holobiont researchPublication . Saha, Mahasweta; Dittami, Simon M.; Chan, Cheong Xin; Raina, Jean‐Baptiste; Stock, Willem; Ghaderiardakani, Fatemeh; John, Ann Mary Valathuparambil Baby; Corr, Shauna; Schleyer, Guy; Todd, Jonathan; Cardini, Ulisse; Bengtsson, Mia M.; Prado, Soizic; Skillings, Derek; Sonnenschein, Eva C.; Engelen, Aschwin; Wang, Gaoge; Wichard, Thomas; Brodie, Juliet; Leblanc, Catherine; Egan, SuhelenIn the marine environment, seaweeds (i.e. marine macroalgae) provide a wide range of ecological services and economic benefits. Like land plants, seaweeds do not provide these services in isolation, rather they rely on their associated microbial communities, which together with the host form the seaweed holobiont. However, there is a poor understanding of the mechanisms shaping these complex seaweed–microbe interactions, and of the evolutionary processes underlying these interactions. Here, we identify the current research challenges and opportunities in the field of seaweed holobiont biology. We argue that identifying the key microbial partners, knowing how they are recruited, and understanding their specific function and their relevance across all seaweed life history stages are among the knowledge gaps that are particularly important to address, especially in the context of the environmental challenges threatening seaweeds. We further discuss future approaches to study seaweed holobionts, and how we can apply the holobiont concept to natural or engineered seaweed ecosystems.
- The future of the northeast Atlantic benthic flora in a high CO2 worldPublication . Brodie, Juliet; Williamson, Christopher J.; Smale, Dan A.; Kamenos, Nicholas A.; Mieszkowska, Nova; Santos, Rui; Cunliffe, Michael; Steinke, Michael; Yesson, Christopher; Anderson, Kathryn M.; Asnaghi, Valentina; Brownlee, Colin; Burdett, Heidi L.; Burrows, Michael T.; Collins, Sinead; Donohue, Penelope J. C.; Harvey, Ben; Foggo, Andrew; Noisette, Fanny; Nunes, Joana; Ragazzola, Federica; Raven, John A.; Schmidt, Daniela N.; Suggett, David; Teichberg, Mirta; Hall-Spencer, JasonSeaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.
- The microbiome of the habitat‐forming brown alga Fucus vesiculosus (Phaeophyceae) has similar cross‐Atlantic structure that reflects past and present drivers 1Publication . Capistrant‐Fossa, Kyle A.; Morrison, Hilary G.; Engelen, Aschwin; Quigley, Charlotte T.C.; Morozov, Aleksey; Serrao, Ester; Brodie, Juliet; Gachon, Claire M.M.; Badis, Yacine; Johnson, Ladd E.; Hoarau, Galice; Abreu, Maria Helena; Tester, Patricia A.; Stearns, Leigh A.; Brawley, Susan H.Latitudinal diversity gradients have provided many insights into species differentiation and community processes. In the well-studied intertidal zone, however, little is known about latitudinal diversity in microbiomes associated with habitat-forming hosts. We investigated microbiomes of Fucus vesiculosus because of deep understanding of this model system and its latitudinally large, cross-Atlantic range. Given multiple effects of photoperiod, we predicted that cross-Atlantic microbiomes of the Fucus microbiome would be similar at similar latitudes and correlate with environmental factors. We found that community structure and individual amplicon sequencing variants (ASVs) showed distinctive latitudinal distributions, but alpha diversity did not. Latitudinal differentiation was mostly driven by ASVs that were more abundant in cold temperate to subarctic (e.g., Granulosicoccus_t3260, Burkholderia/Caballeronia/Paraburkholderia_t8371) or warm temperate (Pleurocapsa_t10392) latitudes. Their latitudinal distributions correlated with different humidity, tidal heights, and air/sea temperatures, but rarely with irradiance or photoperiod. Many ASVs in potentially symbiotic genera displayed novel phylogenetic biodiversity with differential distributions among tissues and regions, including closely related ASVs with differing north-south distributions that correlated with Fucus phylogeography. An apparent southern range contraction of F. vesiculosus in the NW Atlantic on the North Carolina coast mimics that recently observed in the NE Atlantic. We suggest cross-Atlantic microbial structure of F. vesiculosus is related to a combination of past (glacial-cycle) and contemporary environmental drivers.