Percorrer por autor "Carretero, Miguel A."
A mostrar 1 - 2 de 2
Resultados por página
Opções de ordenação
- Does heat tolerance actually predict animals' geographic thermal limits?Publication . Camacho, Agustín; Rodrigues, Miguel Trefaut; Jayyusi, Refat; Harun, Mohamed; Geraci, Marco; Carretero, Miguel A.; Vinagre, Catarina; Tejedo, MiguelThe "climate extremes hypothesis" is a major assumption of geographic studies of heat tolerance and climatic vulnerability. However, this assumption remains vastly untested across taxa, and multiple factors may contribute to uncoupling heat tolerance estimates and geographic limits. Our dataset includes 1000 entries of heat tolerance data and maximum temperatures for each species' known geographic limits (hereafter, Tmax). We gathered this information across major animal taxa, including marine fish, terrestrial arthropods, amphibians, non-avian reptiles, birds, and mammals. We first tested if heat tolerance constrains the Tmax of sites where species could be observed. Secondly, we tested if the strength of such restrictions depends on how high Tmax is relative to heat tolerance. Thirdly, we correlated the different estimates of Tmax among them and across species. Restrictions are strong for amphibians, arthropods, and birds but often weak or inconsistent for reptiles and mammals. Marine fish describe a non-linear relationship that contrasts with terrestrial groups. Traditional heat tolerance measures in thermal vulnerability studies, like panting temperatures and the upper set point of preferred temperatures, do not predict Tmax or are inversely correlated to it, respectively. Heat tolerance restricts the geographic warm edges more strongly for species that reach sites with higher Tmax for their heat tolerance. These emerging patterns underline the importance of reliable species' heat tolerance indexes to identify their thermal vulnerability at their warm range edges. Besides, the tight correlations of Tmax estimates across on -land microhabitats support a view of multiple types of thermal challenges simultaneously shaping ranges' warm edges for on -land species. The heterogeneous correlation of Tmax estimates in the ocean supports the view that fish thermoregulation is generally limited, too. We propose new hypotheses to understand thermal restrictions on animal distribution.
- Thyroid disruption in the lizard Podarcis bocagei exposed to a mixture of herbicides: a field studyPublication . Bicho, Rita C.; Amaral, Maria José; Faustino, Augusto M. R.; Power, Deborah; Rêma, Alexandra; Carretero, Miguel A.; Soares, Amadeu M. V. M.; Mann, Reinier M.Pesticide exposure has been related with thyroid disrupting effects in different vertebrate species. However, very little is known about the effects of these compounds in reptiles. In the Mediterranean area, lacertid lizards are the most abundant vertebrate group in agroecosystems, and have been identified as potential model species for reptile ecotoxicology. The aim of this study was to understand if the herbicides applied in corn fields have thyroid disruptive effects in the lizard Podarcis bocagei. Adult male lizards were captured in north-western Portugal in corn fields treated with herbicides (exposed sites), and in organic agricultural fields (reference sites). Thyroid and male gonad morphology and functionality, and testosterone levels were investigated through histological, immunohistochemical and biochemical techniques. Lizards from exposed locations displayed thyroid follicular lumens with more reabsorption vacuoles and significantly larger follicular area than those from reference fields. Furthermore, testes of lizards from exposed locations had significantly larger seminiferous tubule diameters, significantly higher number of spermatogenic layers and displayed an upregulation of thyroid hormone receptors when compared with lizards from reference areas. These findings strongly suggest that the complex mixture of herbicides that lizards are exposed to in agricultural areas have thyroid disrupting effects which ultimately affect the male reproductive system. Alachlor, which has demonstrated thyroid effects in mammals, may be largely responsible for the observed effects.
