Browsing by Author "Charbonneau, P."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Characteristics of magnetic solar-like cycles in a 3D MHD simulation of solar convectionPublication . Passos, D.; Charbonneau, P.We analyse the statistical properties of the stable magnetic cycle unfolding in an extended 3D magnetohydroclynamic simulation of solar convection produced with the EULAG-MHD code. The millennium,simulation spans over 1650 years, in the course of which forty polarity reversals take place on a regular similar to 40yr cadence, remaining well-synchronized across solar hemispheres. In order to characterize this cycle and facilitate its comparison with measures typically used to represent solar activity, we build two proxies for the magnetic field in the simulation mimicking the solar toroidal field and the polar radial field. Several quantities that characterize the cycle are measured (period, amplitudes, etc.) and correlations between them are computed, These are then compared with their observational analogs. From the typical Gnevyshesv-Ohl pattern, to hints of Gleissberg modulation the simulated cycles share many of the characteristics of their observational analogs even though the simulation lacks poloidal field regeneration through active region decay, a mechanism nowadays often considered an essential component of the solar dynamo. Some significant discrepancies are, also identified, most notably the in-phase variation of the simulated poloidal and toroidal large-scale magnetic components, and the low degree of hemispheric coupling at the level of hemispheric cycle amplitudes. Possible causes underlying these discrepancies are discussed.
- Meridional circulation dynamics in a cyclic convective dynamoPublication . Passos, Dário; Miesch, M.; Guerrero, G.; Charbonneau, P.Surface observations indicate that the speed of the solar meridional circulation in the photosphere varies in anti-phase with the solar cycle. The current explanation for the source of this variation is that inflows into active regions alter the global surface pattern of the meridional circulation. When these localized inflows are integrated over a full hemisphere, they contribute to slowing down the axisymmetric poleward horizontal component. The behavior of this large-scale flow deep inside the convection zone remains largely unknown. Present helioseismic techniques are not sensitive enough to capture the dynamics of this weak large-scale flow. Moreover, the large time of integration needed to map the meridional circulation inside the convection zone, also masks some of the possible dynamics on shorter timescales. In this work we examine the dynamics of the meridional circulation that emerges from a 3D MHD global simulation of the solar convection zone. Our aim is to assess and quantify the behavior of meridional circulation deep inside the convection zone where the cyclic large-scale magnetic field can reach considerable strength. Our analyses indicate that the meridional circulation morphology and amplitude are both highly influenced by the magnetic field via the impact of magnetic torques on the global angular momentum distribution. A dynamic feature induced by these magnetic torques is the development of a prominent upward flow at mid-latitudes in the lower convection zone that occurs near the equatorward edge of the toroidal bands and that peaks during cycle maximum. Globally, the dynamo-generated large-scale magnetic field drives variations in the meridional flow, in stark contrast to the conventional kinematic flux transport view of the magnetic field being advected passively by the flow.
- New insights about meridional circulation dynamics from 3D MHD global simulations of solar convection and dynamo actionPublication . Passos, D.; Charbonneau, P.; Miesch, M. S.The solar meridional circulation is a "slow", large scale flow that transports magnetic field and plasma throughout the convection zone in the (r, theta) plane and plays a crucial role in controlling the magnetic cycle solutions presented by flux transport dynamo models. Observations indicate that this flow speed varies in anti-phase with the solar cycle at the solar surface. A possible explanation for the source of this variation is based on the fact that inflows into active regions alter the global surface pattern of the meridional circulation. In this work we examine the meridional circulation profile that emerges from a 3D global simulation of the solar convection zone, and its associated dynamics. We find that at the bottom of the convection zone, in the region where the toroidal magnetic field accumulates, the meridional circulation is highly modulated through the action of a magnetic torques and thus provides evidence for a new mechanism to explain the observed cyclic variations.