Percorrer por autor "Cousin, Xavier"
A mostrar 1 - 4 de 4
Resultados por página
Opções de ordenação
- Insights on ecotoxicological effects of microplastics in marine ecosystems: the EPHEMARE ProjectPublication . Regoli, Francesco; Albentosa, Marina; Avio, Carlo Giacomo; Batel, Annika; Bebianno, Maria; Begout, Marie-Laure; Beiras, Ricardo; Bellas, Juan; Blust, Ronny; Bour, Agathe; Braunbeck, Thomas; Cachot, Jerome; Carteny, Camilla Catarci; Cormier, Bettie; Cousin, Xavier; Cuesta, Alberto; Angeles Esteban, Maria; Faimali, Marco; Gambardella, Chiara; Garaventa, Francesca; Gorbi, Stefania; Guilhermino, Lucia; Hylland, Ketil; Keiter, Steffen H.; Kopke, Kathrin; Morin, Benedicte; Pacheco, Alexandre; Pittura, Lucia; Town, Raewyn M.; Vieira, Luis R.; Cocca, M; DiPace, E.; Errico, M. E.; Gentile, G; Montarsolo, A.; Mossotti, R.; Avella, M.
- Prioritising research on endocrine disruption in the marine environment: a global perspectivePublication . Pinto, Patricia IS; Miglioli, Angelica; LaLone, Carlie A.; Baumann, Lisa; Baynes, Alice; Blanc‐Legendre, Mélanie; Cancio, Ibon; Cousin, Xavier; Dang, ZhiChao; Dumollard, Rémi; Ford, Alex T.; Green, Christopher; Iguchi, Taisen; Kearney, Philippa; Knigge, Thomas; Minier, Christophe; Monsinjon, Tiphaine; Monteiro, Marta S.; Sturve, Joachim; Watanabe, Haruna; Yamamoto, Hiroshi; Ankley, Gerald; Power, Deborah Mary; Katsiadaki, IoannaA healthy ocean is a crucial life support system that regulates the global climate, is a source of oxygen and supports major economic activities. A vast and understudied biodiversity from micro- to macro-organisms is integral to ocean health. However, the impact of pollutants that reach the ocean daily is understudied for marine taxa, which are also absent or poorly represented in regulatory test guidelines for chemical hazard assessment. Inspired by the United Nations Decade of Ocean Science, which aims to reverse the decline in ocean health, this communication calls for global coordination in building resources for studying the effects of marine pollution. The bibliographic analysis, a collective product of scientists from diverse backgrounds, focused on endocrine-disrupting chemicals (EDCs). In this review, we (i) critically analyse the literature on endocrine signalling pathways and high-level physiological impacts of EDCs across 20 representative marine taxa; (ii) identify knowledge and regulatory gaps; (iii) apply bioinformatics approaches to marine species genomic resources, with relevance for predictions of susceptibility; and (iv) provide recommendations of priority actions for different stakeholders. We reveal that the scientific literature on EDCs is biased towards terrestrial and/or freshwater organisms, is limited to a handful of animal taxa, and marine organisms are dramatically underrepresented. Our bibliographic analysis also confirmed that only a small number of (neuro) endocrine pathways are covered for all animals, whilst basic knowledge on endocrine systems/endocrine disruption for most marine invertebrate phyla is minimal. Despite significant gaps in genomic resources for marine animals, endocrine-related protein conservation was evident across more than 500 species from diverse marine taxa, highlighting that they are at risk from EDCs. Despite recent technological advances, translation of existing knowledge into international regulatory test guidelines for chemical hazard assessment and monitoring programs is limited. Furthermore, the current understanding is confounded in part by transposing vertebrate endocrinology onto non-vertebrate taxa. In this context, specific recommendations are provided for all stakeholders, including academia (e.g. to expand knowledge across metazoan taxa and endocrine targets and translate it to New Approach Methodologies and Adverse Outcome Pathways; to increase and improve tools for comparative species-sensitivity distributions and cross-species extrapolations), regulators (e.g. increase awareness of specific risks for the marine environment, prioritise international standardisation of testing methods for marine species and request evidence for absence of endocrine disruption in marine phyla), policy makers (e.g. implement sustained, long-term international marine monitoring programs and increase global co-operation) and the public or non-governmental organisations (e.g. foster public engagement and behaviours that prevent marine chemical pollution; promote citizen science activities; and drive political actions towards protective and restorative marine policies). We hope that this and past reviews can contribute towards meeting ambitious international plans for marine water quality assurance, mitigation of marine pollution impacts and protection of marine biodiversity. The importance of marine biodiversity for climate change mitigation, food security and sustainable ecosystem services calls for urgent, cooperative action.
- The impact of egg thermal regimes on the response to food deprivation and refeeding in juvenile European sea bass (Dicentrarchus labrax)Publication . Mateus, Ana; Costa, Rita; Jiménez, Javier; Sadoul, Bastien; Bégout, Marie Laure; Cousin, Xavier; Canario, Adelino; Power, DeborahFish are ectotherms and this means they are highly vulnerable to changes in ambient temperature, particularly during early developmental stages when temperature can induce persistent effects on phenotypic traits. In this study, the effect of egg incubation temperature on the response of juvenile European sea bass (Dicentrarchus labrax) to food deprivation and recovery after refeeding was assessed. Eggs were incubated at 11, 13.5 and 16 & DEG;C until hatching and then were reared at a common temperature until 9 months when fish were deprived of food for one week. The recovery from food deprivation was evaluated at 10 h and 2 days post-refeeding. Food deprivation in fish from eggs incubated at the highest temperature (16 & DEG;C) compared to 11 and 13.5 & DEG;C exhibited the most morphological and metabolic changes in the liver and foregut. Liver metabolism was changed as revealed by the significant reduction in lipid area and the increased number of hepatocyte nuclei. Foregut atrophy was coupled to a significant up-regulation of transcripts associated with gluconeogenesis (pck1) and peptide absorption (pept1). A modified metabolic response to the fast-refeed regime was revealed by the significantly decreased levels of plasma lactate, which may result from up-regulation of transcripts of the thyroid axis, deiodinase 2 (dio2) in the foregut. Fish incubated as eggs at a lower temperature (11 & DEG;C) exhibited less changes following the fast-refeed regime. Food deprivation did not significantly modify the morphology of the foregut and the liver parenchyma recovered sooner in fish from the 11 & DEG;C egg thermal regime compared to fish from the other thermal regimes following refeeding. The latter group of fish had a temporary stimulation of the GH-IGF axis with significant up-regulation of liver insulin-like growth factor I and II (igf-1 and igf-2) after fasting. The liver parenchyma of fish from the 13.5 & DEG;C egg thermal regime (the standard temperature of the hatchery stage) did not recover by the end of the experiment and transcripts of catalase (cat), encoding an antioxidant enzyme, were significantly downregulated compared to fish from the other egg thermal regimes. Our results suggest that thermal imprinting at the egg stage in European sea bass modified the juvenile metabolic response to food deprivation and the recovery response when feeding was resumed.
- Thermal imprinting during embryogenesis modifies skin repair in juvenile European sea bass (Dicentrarchus labrax)Publication . Mateus, Ana; Costa, Rita; Sadoul, Bastien; Bégout, Marie-Laure; Cousin, Xavier; Canario, Adelino; Power, DeborahFish skin is a multifunctional tissue that develops during embryogenesis, a developmental stage highly suscep-tible to epigenetic marks. In this study, the impact of egg incubation temperature on the regeneration of a cutaneous wound caused by scale removal in juvenile European sea bass was evaluated. Sea bass eggs were incubated at 11, 13.5 and 16 degrees C until hatching and then were reared at a common temperature until 9 months when the skin was damaged and sampled at 0, 1 and 3 days after scale removal and compared to the intact skin from the other flank. Skin damage elicited an immediate significant (p < 0.001) up-regulation of pcna in fish from eggs incubated at higher temperatures. In fish from eggs incubated at 11 C there was a significant (p < 0.001) up-regulation of krt2 compared to fish from higher thermal backgrounds 1 day after skin damage. Damaged epidermis was regenerated after 3 days in all fish irrespective of the thermal background, but in fish from eggs incubated at 11 C the epidermis was significantly (p < 0.01) thinner compared to other groups, had less goblet cells and less melanomacrophages. The thickness of the dermis increased during regeneration of wounded skin irrespective of the thermal background and by 3 days was significantly (p < 0.01) thicker than the dermis from the intact flank. The expression of genes for ECM remodelling (mmp9, colX alpha, col1 alpha 1, sparc, and angptl2b) and innate immunity (lyg1, lalba, sod1, csf-1r and ppar gamma) changed during regeneration but were not affected by egg thermal regime. Overall, the results indicate that thermal imprinting of eggs modifies the damage-repair response in juvenile sea bass skin.
