Browsing by Author "Embley, T. M."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- An archaeal origin of eukaryotes supports only two primary domains of lifePublication . Williams, T. A.; Foster, P. G.; Cox, C. J.; Embley, T. M.The discovery of the Archaea and the proposal of the three-domains ‘universal’ tree, based on ribosomal RNA and core genes mainly involved in protein translation, catalysed new ideas for cellular evolution and eukaryotic origins. However, accumulating evidence suggests that the three-domains tree may be incorrect: evolutionary trees made using newer methods place eukaryotic core genes within the Archaea, supporting hypotheses in which an archaeon participated in eukaryotic origins by founding the host lineage for the mitochondrial endosymbiont. These results provide support for only two primary domains of life—Archaea and Bacteria—because eukaryotes arose through partnership between them.
- Analyses of charophyte chloroplast genomes help characterize theancestral chloroplastgenomeof land plantsPublication . Civáň, Peter; Foster, P. G.; Embley, T. M.; Séneca, A.; Cox, C. J.Despitethesignificanceoftherelationshipsbetweenembryophytesandtheircharophytealgalancestorsindecipheringtheoriginand evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae).
- Compositional biases among synonymous substitutions cause conflict between gene and protein trees for plastid originsPublication . Li, Blaise; Lopes, J. S.; Foster, P. G.; Embley, T. M.; Cox, C. J.Archaeplastida (=Kingdom Plantae) are primary plastid-bearing organisms that evolved via the endosymbiotic association of a heterotrophic eukaryote host cell and a cyanobacterial endosymbiont approximately 1,400 Ma. Here, we present analyses of cyanobacterial and plastid genomes that show strongly conflicting phylogenies based on 75 plastid (or nuclear plastid-targeted) protein-coding genes and their direct translations to proteins. The conflict between genes and proteins is largely robust to the use of sophisticated data- and tree-heterogeneous composition models. However, by using nucleotide ambiguity codes to eliminate synonymous substitutions due to codon-degeneracy, we identify a composition bias, and dependent codon-usage bias, resulting from synonymous substitutions at all third codon positions and first codon positions of leucine and arginine, as the main cause for the conflicting phylogenetic signals. We argue that the protein-coding gene data analyses are likely misleading due to artifacts induced by convergent composition biases at first codon positions of leucine and arginine and at all third codon positions. Our analyses corroborate previous studies based on gene sequence analysis that suggest Cyanobacteria evolved by the early paraphyletic splitting of Gloeobacter and a specific Synechococcus strain (JA33Ab), with all other remaining cyanobacterial groups, including both unicellular and filamentous species, forming the sister-group to the Archaeplastida lineage. In addition, our analyses using better-fitting models suggest (but without statistically strong support) an early divergence of Glaucophyta within Archaeplastida, with the Rhodophyta (red algae), and Viridiplantae (green algae and land plants) forming a separate lineage.
- Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutionsPublication . Cox, C. J.; Li, Blaise; Foster, P. G.; Embley, T. M.; Civáň, PeterPlants are the primary producers of the terrestrial ecosystems that dominate much of the natural environment. Occurring approximately 480 Ma (Sanderson 2003; Kenrick et al. 2012), the evolutionary transition of plants from an aquatic to a terrestrial environment was accompanied by several major developmental innovations. The freshwater charophyte ancestors of land plants have a haplobiontic life cycle with a single haploid multicellular stage, whereas land plants, which include the bryophytes (liverworts, hornworts, and mosses) and tracheophytes (also called vascular plants, namely, lycopods, ferns, and seed plants), exhibit a marked alternation of generations with a diplobiontic life cycle with both haploid and diploid multicellular stages and where the embryo remains attached to, and is nourished by, the gametophyte (Haig 2008).
- The archaebacterial origin of eukaryotesPublication . Cox, C. J.; Foster, P. G.; Hirt, R. P.; Harris, S. R.; Embley, T. M.The origin of the eukaryotic genetic apparatus is thought to be central to understanding the evolution of the eukaryotic cell. Disagreement about the source of the relevant genes has spawned competing hypotheses for the origins of the eukaryote nuclear lineage. The iconic rooted 3-domains tree of life shows eukaryotes and archaebacteria as separate groups that share a common ancestor to the exclusion of eubacteria. By contrast, the eocyte hypothesis has eukaryotes originating within the archaebacteria and sharing a common ancestor with a particular group called the Crenarchaeota or eocytes. Here, we have investigated the relative support for each hypothesis from analysis of 53 genes spanning the 3 domains, including essential components of the eukaryotic nucleic acid replication, transcription, and translation apparatus. As an important component of our analysis, we investigated the fit between model and data with respect to composition. Compositional heterogeneity is a pervasive problem for reconstruction of ancient relationships, which, if ignored, can produce an incorrect tree with strong support. To mitigate its effects, we used phylogenetic models that allow for changing nucleotide or amino acid compositions over the tree and data. Our analyses favor a topology that supports the eocyte hypothesis rather than archaebacterial monophyly and the 3-domains tree of life.
