Percorrer por autor "Flanagan, J. A."
A mostrar 1 - 3 de 3
Resultados por página
Opções de ordenação
- Cloning of the cDNA for sea bream (Sparus aurata) parathyroid hormone-related proteinPublication . Flanagan, J. A.; Power, Deborah; Bendell, L. A.; Guerreiro, P. M.; Fuentes, J.; Clark, M. S.; Canario, Adelino V. M.; Danks, J. A.; Brown, B. L.; Ingleton, P. M.This paper reports cloning of the cDNA for sea bream (Sparus aurata) parathyroid hormone-related protein (PTHrP). The gene codes for a 125-amino acid mature protein with a 35-residue prepeptide. The total gene sequence is 1.8 kb with approximately 75% noncoding. The N-terminus of the protein resembles mammalian and chicken PTHrP peptides with 12 of the first 21 amino acids identical and for which there is homology with mammalian parathyroid hormone. Toward the C-terminus, the nuclear transporter region between residues 79 and 93 in sea bream is 73% homologous to tetrapod PTHrP, and the RNA binding domain, 96–117, is 50% homologous, moreover starting with the conserved lysine and terminating with the lysine/arginine sequence. Sea bream PTHrP differs significantly from mammalian and chicken PTHrP, having a novel 16-amino acid segment between residues 38 and 54 and completely lacking the terminal domain associated in mammals with inhibition of bone matrix lysis. RT-PCR and in situ hybridization of sea bream tissues show that the gene is expressed widely and the results confirm observations of a PTHrP-like factor in sea bream detected with antisera to human PTHrP.
- Cloning of the cDNA for the putative calcium-sensing receptor and its tissue distribution in sea bream (Sparus aurata)Publication . Flanagan, J. A.; Bendell, L. A.; Guerreiro, P. M.; Clark, M. S.; Power, Deborah; Canario, Adelino V. M.; Brown, B. L.; Ingleton, P. M.The cDNA for the calcium-sensing receptor (CaSR) gene has been cloned from the marine teleost Sparus aurata, the sea bream. The isolated clones were 3.3 kb long with an open reading frame of 2820 bp, a 50 UTR of 240 bp, and 30 UTR of 248 bp. The gene codes for a mature peptide of 940 amino acids which has three principal domains; the extracellular region is more than half the total protein, there is a seven-transmembrane domain, and there is a short intracellular domain. There is considerable sequence identity, 91%, shared between the CaSR of sea bream and puffer fish but overall similarities with mammalian CaSR peptides vary between 44% for rat and mouse and 48% with human CaSR. Nevertheless, the 18 cysteine residues of the extracellular domain are present in all sequences so far analysed of which 9 form a cysteine-rich region in sea bream similar to mammalian CaSR. The distribution of CaSR in sea bream tissues detected by in situ hybridisation showed gene expression in epithelia associated with ion transport or ion regulation including the hind gut, chloride cells of the gills, operculum, gall bladder, pituitary adenohypophysis, and coronet cells of the saccus vasculosus; this distribution was confirmed by RT-PCR. By in situ hybridisation, CaSR gene expression was also present in olfactory nerves and leucocytes.
- Genomic structure and expression of parathyroid hormone-related protein gene (PTHrP) in a teleost, Fugu rubripesPublication . Power, Deborah; Ingleton, P. M.; Flanagan, J. A.; Canario, Adelino V. M.; Danks, J. A.; Elgar, Greg; Clark, M. S.In this study we describe the isolation and characterisation of the parathyroid hormone-related protein (PTHrP) gene from the teleost Fugu rubripes. The gene has a relatively simple structure, compared with tetrapod PTHrP genes, composed of three exons and two introns, encompassing 2.25 kb of genomic DNA. The gene encodes a protein of 163 amino acids, with a putative signal peptide of 37 amino acids and a mature peptide of 126 amino acids. The overall homology with known tetrapod PTHrP proteins is low (36%), with a novel sequence inserted between positions 38 and 65, the absence of the conserved pentapeptide (TRSAW) and shortened C-terminal domain. The N-terminus shows greater conservation (62%), suggesting that it may have a hypercalcaemic function similar to that of tetrapod PTHrP. In situ localisation and RT–PCR have demonstrated the presence of PTHrP in a wide range of tissues with varying levels of expression. Sequence scanning of overlapping cosmids has identified three additional genes, TMPO, LDHB and KCNA1, which map to human chromosome 12, with the latter two mapping to 12p12-11.2. PTHrP in human also maps to this chromosome 12 sub-region, thus demonstrating conservation of synteny between human and Fugu.
