Browsing by Author "Gouveia, Luísa"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Growth performance, biochemical composition and sedimentation velocity of Tetraselmis sp. CTP4 under different salinities using low-cost lab- and pilot-scale systemsPublication . Trovão, Mafalda; Pereira, Hugo; Silva, Joana; Páramo, Jaime; Quelhas, Pedro; Santos, Tamara; Silva, Joana T.; Machado, Adriana; Gouveia, Luísa; Barreira, Luísa; Varela, JoãoBiomass harvesting is one of the most expensive steps of the whole microalgal production pipeline. Therefore, the present work aimed to understand the effect of salinity on the growth performance, biochemical composition and sedimentation velocity of Tetraselmis sp. CTP4, in order to establish an effective low-cost pilot-scale harvesting system for this strain. At lab scale, similar growth performance was obtained in cultures grown at salinities of 5, 10 and 20 g L-1 NaCl. In addition, identical settling velocities (2.4-3.6 cm h-1) were observed on all salinities under study, regardless of the growth stage. However, higher salinities (20 g L-1) promoted a significant increase in lipid contents in this strain compared to when this microalga was cultivated at 5 or 10 g L-1 NaCl. At pilot-scale, cultures were cultivated semi-continuously in 2.5-m3 tubular photobioreactors, fed every four days, and stored in a 1-m3 harvesting tank. Upon a 24-hour settling step, natural sedimentation of the microalgal cells resulted in the removal of 93% of the culture medium in the form of a clear liquid containing only vestigial amounts of biomass (0.07 ± 0.02 g L-1 dry weight; DW). The remaining culture was recovered as a highly concentrated culture (19.53 ± 4.83 g L-1 DW) and wet microalgal paste (272.7 ± 18.5 g L-1 DW). Overall, this method provided an effective recovery of 97% of the total biomass, decreasing significantly the harvesting costs.
- Isolation of a euryhaline microalgal strain, Tetraselmis sp CTP4, as a robust feedstock for biodiesel productionPublication . Pereira, Hugo; Gangadhar, Katkam N.; Schulze, Peter S.C.; Santos, Tamara; de Sousa, Carolina Bruno; Schueler, Lisa; Custódio, Luísa; Malcata, F. Xavier; Gouveia, Luísa; Varela, J.; Barreira, LuísaBioprospecting for novel microalgal strains is key to improving the feasibility of microalgae-derived biodiesel production. Tetraselmis sp. CTP4 (Chlorophyta, Chlorodendrophyceae) was isolated using fluorescence activated cell sorting (FACS) in order to screen novel lipid-rich microalgae. CTP4 is a robust, euryhaline strain able to grow in seawater growth medium as well as in non-sterile urban wastewater. Because of its large cell size (9-22 mu m), CTP4 settles down after a six-hour sedimentation step. This leads to a medium removal efficiency of 80%, allowing a significant decrease of biomass dewatering costs. Using a two-stage system, a 3-fold increase in lipid content (up to 33% of DW) and a 2-fold enhancement in lipid productivity (up to 52.1 mg L-1 d(-1)) were observed upon exposure to nutrient depletion for 7 days. The biodiesel synthesized from the lipids of CTP4 contained high levels of oleic acid (25.67% of total fatty acids content) and minor amounts of polyunsaturated fatty acids with >= 4 double bonds (< 1%). As a result, this biofuel complies with most of the European (EN14214) and American (ASTM D6751) specifications, which commonly used microalgal feedstocks are usually unable to meet. In conclusion, Tetraselmis sp. CTP4 displays promising features as feedstock with lower downstream processing costs for biomass dewatering and biodiesel refining.
- Nutritional potential and toxicological evaluation of tetraselmis sp. CTP4 microalgal biomass produced in industrial photobioreactorsPublication . Pereira, Hugo; Silva, Joana; Santos, Tamara; Gangadhar, Katkam N.; Raposo, Ana; Nunes, Cláudia; Coimbra, Manuel A.; Gouveia, Luísa; Barreira, Luísa; Varela, JoãoCommercial production of microalgal biomass for food and feed is a recent worldwide trend. Although it is common to publish nutritional data for microalgae grown at the lab-scale, data about industrial strains cultivated in an industrial setting are scarce in the literature. Thus, here we present the nutritional composition and a microbiological and toxicological evaluation of Tetraselmis sp. CTP4 biomass, cultivated in 100-m3 photobioreactors at an industrial production facility (AlgaFarm). This microalga contained high amounts of protein (31.2 g/100 g), dietary fibres (24.6 g/100 g), digestible carbohydrates (18.1 g/100 g) and ashes (15.2 g/100 g), but low lipid content (7.04 g/100 g). The biomass displayed a balanced amount of essential amino acids, n-3 polyunsaturated fatty acids, and starch-like polysaccharides. Significant levels of chlorophyll (3.5 g/100 g), carotenoids (0.61 g/100 g), and vitamins (e.g., 79.2 mg ascorbic acid /100 g) were also found in the biomass. Conversely, pathogenic bacteria, heavy metals, cyanotoxins, mycotoxins, polycyclic aromatic hydrocarbons, and pesticides were absent. The biomass showed moderate antioxidant activity in several in vitro assays. Taken together, as the biomass produced has a balanced biochemical composition of macronutrients and (pro-)vitamins, lacking any toxic contaminants, these results suggest that this strain can be used for nutritional applications.
- Production of mannosylerythritol lipids using oils from oleaginous microalgae: two sequential microorganism culture approachPublication . Nascimento, Miguel Figueiredo; Coelho, Tiago; Reis, Alberto; Gouveia, Luísa; Faria, Nuno Torres; Ferreira, Frederico CasteloMannosylerythritol lipids (MELs) are biosurfactants with excellent biochemical properties and a wide range of potential applications. However, most of the studies focusing on MELs high titre production have been relying in the use of vegetable oils with impact on the sustainability and process economy. Herein, we report for the first time MELs production using oils produced from microalgae. The bio-oil was extracted from Neochloris oleoabundans and evaluated for their use as sole carbon source or in a co-substrate strategy, using as an additional carbon source D-glucose, on Moesziomyces spp. cultures to support cell growth and induce the production of MELs. Both Moesziomyces antarcticus and M. aphidis were able to grow and produce MELs using algae-derived bio-oils as a carbon source. Using a medium containing as carbon sources 40 g/L of D-glucose and 20 g/L of bio-oils, Moesziomyces antarcticus and M. aphidis produced 12.47 +/- 0.28 and 5.72 +/- 2.32 g/L of MELs, respectively. Interestingly, there are no significant differences in productivity when using oils from microalgae or vegetable oils as carbon sources. The MELs productivities achieved were 1.78 +/- 0.04 and 1.99 +/- 0.12 g/L/h, respectively, for M. antarcticus fed with algae-derived or vegetable oils. These results open new perspectives for the production of MELs in systems combining different microorganisms.