Browsing by Author "Guo, Tianjian"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Sampling Based Estimation of In-Degree Distribution for Directed Complex NetworksPublication . Antunes, Nelson; Bhamidi, Shankar; Guo, Tianjian; Pipiras, Vladas; Wang, BangThe focus of this work is on estimation of the in-degree distribution in directed networks from sampling network nodes or edges. A number of sampling schemes are considered, including random sampling with and without replacement, and several approaches based on random walks with possible jumps. When sampling nodes, it is assumed that only the out-edges of that node are visible, that is, the in-degree of that node is not observed. The suggested estimation of the in-degree distribution is based on two approaches. The inversion approach exploits the relation between the original and sample in-degree distributions, and can estimate the bulk of the in-degree distribution, but not the tail of the distribution. The tail of the in-degree distribution is estimated through an asymptotic approach, which itself has two versions: one assuming a power-law tail and the other for a tail of general form. The two estimation approaches are examined on synthetic and real networks, with good performance results, especially striking for the asymptotic approach. Supplementary files for this article are available online.
- Sampling methods and estimation of triangle count distributions in large networksPublication . Antunes, Nelson; Guo, Tianjian; Pipiras, VladasThis paper investigates the distributions of triangle counts per vertex and edge, as a means for network description, analysis, model building, and other tasks. The main interest is in estimating these distributions through sampling, especially for large networks. A novel sampling method tailored for the estimation analysis is proposed, with three sampling designs motivated by several network access scenarios. An estimation method based on inversion and an asymptotic method are developed to recover the entire distribution. A single method to estimate the distribution using multiple samples is also considered. Algorithms are presented to sample the network under the various access scenarios. Finally, the estimation methods on synthetic and real-world networks are evaluated in a data study.
