Browsing by Author "Hagoort, Peter"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Broca's region: A causal role in implicit processing of grammars with crossed non-adjacent dependenciesPublication . Udden, Julia; Ingvar, Martin; Hagoort, Peter; Petersson, Karl MagnusNon-adjacent dependencies are challenging for the language learning machinery and are acquired later than adjacent dependencies. In this transcranial magnetic stimulation (TMS) study, we show that participants successfully discriminated between grammatical and non-grammatical sequences after having implicitly acquired an artificial language with crossed non-adjacent dependencies. Subsequent to transcranial magnetic stimulation of Broca's region, discrimination was impaired compared to when a language-irrelevant control region (vertex) was stimulated. These results support the view that Broca's region is engaged in structured sequence processing and extend previous functional neuroimaging results on artificial grammar learning (AGL) in two directions: first, the results establish that Broca's region is a causal component in the processing of non-adjacent dependencies, and second, they show that implicit processing of non-adjacent dependencies engages Broca's region. Since patients with lesions in Broca's region do not always show grammatical processing difficulties, the result that Broca's region is causally linked to processing of non-adjacent dependencies is a step towards clarification of the exact nature of syntactic deficits caused by lesions or perturbation to Broca's region. Our findings are consistent with previous results and support a role for Broca's region in general structured sequence processing, rather than a specific role for the processing of hierarchically organized sentence structure. (C) 2017 Published by Elsevier B.V.
- Implicit acquisition of grammars with crossed and nested non-adjacent dependencies: investigating the push-down stack modelPublication . Udden, Julia; Ingvar, Martin; Hagoort, Peter; Petersson, Karl MagnusA recent hypothesis in empirical brain research on language is that the fundamental difference between animal and human communication systems is captured by the distinction between finite-state and more complex phrase-structure grammars, such as context-free and context-sensitive grammars. However, the relevance of this distinction for the study of language as a neurobiological system has been questioned and it has been suggested that a more relevant and partly analogous distinction is that between non-adjacent and adjacent dependencies. Online memory resources are central to the processing of non-adjacent dependencies as information has to be maintained across intervening material. One proposal is that an external memory device in the form of a limited push-down stack is used to process non-adjacent dependencies. We tested this hypothesis in an artificial grammar learning paradigm where subjects acquired non-adjacent dependencies implicitly. Generally, we found no qualitative differences between the acquisition of non-adjacent dependencies and adjacent dependencies. This suggests that although the acquisition of non-adjacent dependencies requires more exposure to the acquisition material, it utilizes the same mechanisms used for acquiring adjacent dependencies. We challenge the push-down stack model further by testing its processing predictions for nested and crossed multiple non-adjacent dependencies. The push-down stack model is partly supported by the results, and we suggest that stack-like properties are some among many natural properties characterizing the underlying neurophysiological mechanisms that implement the online memory resources used in language and structured sequence processing.
- Neurobiological causal models of language processingPublication . Fitz, Hartmut; Hagoort, Peter; Petersson, Karl MagnusThe language faculty is physically realized in the neurobiological infrastructure of the human brain. Despite significant efforts, an integrated understanding of this system remains a formidable challenge. What is missing from most theoretical accounts is a specification of the neural mechanisms that implement language function. Computational models that have been put forward generally lack an explicit neurobiological foundation. We propose a neurobiologically informed causal modeling approach which offers a framework for how to bridge this gap. A neurobiological causal model is a mechanistic description of language processing that is grounded in, and constrained by, the characteristics of the neurobiological substrate. It intends to model the generators of language behavior at the level of implementational causality. We describe key features and neurobiological component parts from which causal models can be built and provide guidelines on how to implement them in model simulations. Then we outline how this approach can shed new light on the core computational machinery for language, the long-term storage of words in the mental lexicon and combinatorial processing in sentence comprehension. In contrast to cognitive theories of behavior, causal models are formulated in the "machine language" of neurobiology which is universal to human cognition. We argue that neurobiological causal modeling should be pursued in addition to existing approaches. Eventually, this approach will allow us to develop an explicit computational neurobiology of language.
- The neurobiology of syntax: beyond string setsPublication . Petersson, Karl Magnus; Hagoort, PeterThe human capacity to acquire language is an outstanding scientific challenge to understand. Somehow our language capacities arise from the way the human brain processes, develops and learns in interaction with its environment. To set the stage, we begin with a summary of what is known about the neural organization of language and what our artificial grammar learning (AGL) studies have revealed. We then review the Chomsky hierarchy in the context of the theory of computation and formal learning theory. Finally, we outline a neurobiological model of language acquisition and processing based on an adaptive, recurrent, spiking network architecture. This architecture implements an asynchronous, event-driven, parallel system for recursive processing. We conclude that the brain represents grammars (or more precisely, the parser/generator) in its connectivity, and its ability for syntax is based on neurobiological infrastructure for structured sequence processing. The acquisition of this ability is accounted for in an adaptive dynamical systems framework. Artificial language learning (ALL) paradigms might be used to study the acquisition process within such a framework, as well as the processing properties of the underlying neurobiological infrastructure. However, it is necessary to combine and constrain the interpretation of ALL results by theoretical models and empirical studies on natural language processing. Given that the faculty of language is captured by classical computational models to a significant extent, and that these can be embedded in dynamic network architectures, there is hope that significant progress can be made in understanding the neurobiology of the language faculty.
- The P600 in Implicit Artificial Grammar LearningPublication . Silva, Susana; Folia, Vasiliki; Hagoort, Peter; Petersson, Karl MagnusThe suitability of the artificial grammar learning (AGL) paradigm to capture relevant aspects of the acquisition of linguistic structures has been empirically tested in a number of EEG studies. Some have shown a syntax-related P600 component, but it has not been ruled out that the AGL P600 effect is a response to surface features (e. g., subsequence familiarity) rather than the underlying syntax structure. Therefore, in this study, we controlled for the surface characteristics of the test sequences (associative chunk strength) and recorded the EEG before (baseline preference classification) and after (preference and grammaticality classification) exposure to a grammar. After exposure, a typical, centroparietal P600 effect was elicited by grammatical violations and not by unfamiliar subsequences, suggesting that the AGL P600 effect signals a response to structural irregularities. Moreover, preference and grammaticality classification showed a qualitatively similar ERP profile, strengthening the idea that the implicit structural mere-exposure paradigm in combination with preference classification is a suitable alternative to the traditional grammaticality classification test.
- The Tripod neuron: a minimal structural reduction of the dendritic treePublication . Quaresima, Alessio; Fitz, Hartmut; Duarte, Renato; Broek, Dick van den; Hagoort, Peter; Petersson, Karl MagnusNeuron models with explicit dendritic dynamics have shed light on mechanisms for coincidence detection, pathway selection and temporal filtering. However, it is still unclear which morphological and physiological features are required to capture these phenomena. In this work, we introduce the Tripod neuron model and propose a minimal structural ion of the dendritic tree that is able to reproduce these computations. The Tripod is a three-compartment model consisting of two segregated passive dendrites and a somatic compartment modelled as an adaptive, exponential integrate-and-tire neuron. It incorporates dendritic geometry, membrane physiology and receptor dynamics as measured in human pyramidal cells. We characterize the response of the Tripod to glutamatergic and GABAergic inputs and identify parameters that support supra-linear integration, coincidence-detection and pathway-specific gating through shunting inhibition. Following NMDA spikes, the Tripod neuron generates plateau potentials whose duration depends on the dendritic length and the strength of synaptic input. When titled with distal compartments, the Tripod encodes previous activity into a dendritic depolarized state. This dendritic memory allows the neuron to perform temporal binding, and we show that it solves transition and sequence detection tasks on which a single-compartment model fails. Thus, the Tripod can account for dendritic computations previously explained only with more detailed neuron models or neural networks. Due to its simplicity, the Tripod neuron can be used efficiently in simulations of larger cortical circuits.
- What artificial grammar learning reveals about the neurobiology of syntaxPublication . Karl Magnus Petersson; Folia, Vasiliki; Hagoort, PeterIn this paper we examine the neurobiological correlates of syntax, the processing of structured sequences, by comparing FMRI results on artificial and natural language syntax. We discuss these and similar findings in the context of formal language and computability theory. We used a simple right-linear unification grammar in an implicit artificial grammar learning paradigm in 32 healthy Dutch university students (natural language FMRI data were already acquired for these participants). We predicted that artificial syntax processing would engage the left inferior frontal region (BA 44/45) and that this activation would overlap with syntax-related variability observed in the natural language experiment. The main findings of this study show that the left inferior frontal region centered on BA 44/45 is active during artificial syntax processing of well-formed (grammatical) sequence independent of local subsequence familiarity. The same region is engaged to a greater extent when a syntactic violation is present and structural unification becomes difficult or impossible. The effects related to artificial syntax in the left inferior frontal region (BA 44/45) were essentially identical when we masked these with activity related to natural syntax in the same subjects. Finally, the medial temporal lobe was deactivated during this operation, consistent with the view that implicit processing does not rely on declarative memory mechanisms that engage the medial temporal lobe. In the context of recent FMRI findings, we raise the question whether Broca's region (or subregions) is specifically related to syntactic movement operations or the processing of hierarchically nested non-adjacent dependencies in the discussion section. We conclude that this is not the case. Instead, we argue that the left inferior frontal region is a generic on-line sequence processor that unifies information from various sources in an incremental and recursive manner, independent of whether there are any processing requirements related to syntactic movement or hierarchically nested structures. In addition, we argue that the Chomsky hierarchy is not directly relevant for neurobiological systems. (C) 2010 Elsevier Inc. All rights reserved.
