Browsing by Author "Ktari, Leila"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A guide to the use of bioassays in exploration of natural resourcesPublication . Sabotič, Jerica; Bayram, Engin; Ezra, David; Gaudêncio, Susana P.; Haznedaroğlu, Berat Z.; Janež, Nika; Ktari, Leila; Luganini, Anna; Mandalakis, Manolis; Safarik, Ivo; Simes, Dina; Strode, Evita; Toruńska-Sitarz, Anna; Varamogianni-Mamatsi, Despoina; Varese, Giovanna Cristina; Vasquez, Marlen I.Bioassays are the main tool to decipher bioactivities from natural resources thus their selection and quality are critical for optimal bioprospecting. They are used both in the early stages of compounds isolation/purification/ identification, and in later stages to evaluate their safety and efficacy. In this review, we provide a comprehensive overview of the most common bioassays used in the discovery and development of new bioactive compounds with a focus on marine bioresources. We present a comprehensive list of practical considerations for selecting appropriate bioassays and discuss in detail the bioassays typically used to explore antimicrobial, antibiofilm, cytotoxic, antiviral, antioxidant, and anti-ageing potential. The concept of quality control and bioassay validation are introduced, followed by safety considerations, which are critical to advancing bioactive compounds to a higher stage of development. We conclude by providing an application-oriented view focused on the development of pharmaceuticals, food supplements, and cosmetics, the industrial pipelines where currently known marine natural products hold most potential. We highlight the importance of gaining reliable bioassay results, as these serve as a starting point for application -based development and further testing, as well as for consideration by regulatory authorities.
- The essentials of Marine BiotechnologyPublication . Rotter, Ana; Barbier, Michéle; Bertoni, Francesco; Bones, Atle M.; Cancela, M. Leonor; Carlsson, Jens; Carvalho, Maria F.; Cegłowska, Marta; Chirivella-Martorell, Jerónimo; Conk Dalay, Meltem; Cueto, Mercedes; Dailianis, Thanos; Deniz, Irem; Díaz-Marrero, Ana R.; Drakulovic, Dragana; Dubnika, Arita; Edwards, Christine; Einarsson, Hjörleifur; Erdoǧan, Ayşegül; Eroldoǧan, Orhan Tufan; Ezra, David; Fazi, Stefano; FitzGerald, Richard J.; Gargan, Laura M.; Gaudêncio, Susana P.; Gligora Udovič, Marija; Ivošević DeNardis, Nadica; Jónsdóttir, Rósa; Kataržytė, Marija; Klun, Katja; Kotta, Jonne; Ktari, Leila; Ljubešić, Zrinka; Lukić Bilela, Lada; Mandalakis, Manolis; Massa-Gallucci, Alexia; Matijošytė, Inga; Mazur-Marzec, Hanna; Mehiri, Mohamed; Nielsen, Søren Laurentius; Novoveská, Lucie; Overlingė, Donata; Perale, Giuseppe; Ramasamy, Praveen; Rebours, Céline; Reinsch, Thorsten; Reyes, Fernando; Rinkevich, Baruch; Robbens, Johan; Röttinger, Eric; Rudovica, Vita; Sabotič, Jerica; Safarik, Ivo; Talve, Siret; Tasdemir, Deniz; Theodotou Schneider, Xenia; Thomas, Olivier P.; Toruńska-Sitarz, Anna; Varese, Giovanna Cristina; Vasquez, Marlen I.Coastal countries have traditionally relied on the existing marine resources (e.g., fishing, food, transport, recreation, and tourism) as well as tried to support new economic endeavors (ocean energy, desalination for water supply, and seabed mining). Modern societies and lifestyle resulted in an increased demand for dietary diversity, better health and well-being, new biomedicines, natural cosmeceuticals, environmental conservation, and sustainable energy sources. These societal needs stimulated the interest of researchers on the diverse and underexplored marine environments as promising and sustainable sources of biomolecules and biomass, and they are addressed by the emerging field of marine (blue) biotechnology. Blue biotechnology provides opportunities for a wide range of initiatives of commercial interest for the pharmaceutical, biomedical, cosmetic, nutraceutical, food, feed, agricultural, and related industries. This article synthesizes the essence, opportunities, responsibilities, and challenges encountered in marine biotechnology and outlines the attainment and valorization of directly derived or bio-inspired products from marine organisms. First, the concept of bioeconomy is introduced. Then, the diversity of marine bioresources including an overview of the most prominent marine organisms and their potential for biotechnological uses are described. This is followed by introducing methodologies for exploration of these resources and the main use case scenarios in energy, food and feed, agronomy, bioremediation and climate change, cosmeceuticals, bio-inspired materials, healthcare, and well-being sectors. The key aspects in the fields of legislation and funding are provided, with the emphasis on the importance of communication and stakeholder engagement at all levels of biotechnology development. Finally, vital overarching concepts, such as the quadruple helix and Responsible Research and Innovation principle are highlighted as important to follow within the marine biotechnology field. The authors of this review are collaborating under the European Commission-funded Cooperation in Science and Technology (COST) Action Ocean4Biotech – European transdisciplinary networking platform for marine biotechnology and focus the study on the European state of affairs.