Browsing by Author "Leão, Ricardo"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Combined genetic and epigenetic alterations of the TERT promoter affect clinical and biological behavior of bladder cancerPublication . Leão, Ricardo; Lee, Donghyun; Figueiredo, Arnaldo; Hermanns, Thomas; Wild, Peter; Komosa, Martin; Lau, Irene; Mistry, Mathew; Nunes, Nuno Miguel; Price, Aryeh J.; Zhang, Cindy; Lipman, Tatiana; Poyet, Cédric; Valtcheva, Nadejda; Oehl, Kathrin; Coelho, Hugo; Sayyid, Rashid; Gomes, Ana Melo; Prado e Castro, Ligia; Sweet, Joan; Vinagre, João; Apolónio, Joana; Stephens, Derek; Faleiro, Inês; Fadaak, Kamel; Richard, Patrick O.; Kulkarni, Girish; Zlotta, Alexandre R.; Hamilton, Robert J.; Castelo-Branco, Pedro; Tabori, UriIn urothelial bladder cancer (UBC), risk stratification remains an important unmet need. Limitless self-renewal, governed by TERT expression and telomerase activation, is crucial for cancer progression. Thus, telomerase activation through the interplay of mutations (TERTpMut ) and epigenetic alterations in the TERT promoter may provide further insight into UBC behavior. Here, we investigated the combined effect of TERTpMut and the TERT Hypermethylated Oncological Region (THOR) status on telomerase activation and patient outcome in a UBC international cohort (n = 237). We verified that TERTpMut were frequent (76.8%) and present in all stages and grades of UBC. Hypermethylation of THOR was associated with higher TERT expression and higher-risk disease in nonmuscle invasive bladder cancers (NMIBC). TERTpMut alone predicted disease recurrence (HR: 3.18, 95%CI 1.84 to 5.51, p < 0.0001) but not progression in NMIBC. Combined THORhigh /TERTpMut increased the risk of disease recurrence (HR 5.12, p < 0.0001) and progression (HR 3.92, p = 0.025). Increased THOR hypermethylation doubled the risk of stage progression of both TERTpwt and TERTpMut NMIBC. These results highlight that both mechanisms are common and coexist in bladder cancer and while TERTpMut is an early event in bladder carcinogenesis THOR hypermethylation is a dynamic process that contributes to disease progression. While the absence of alterations comprises an extremely indolent phenotype, the combined genetic and epigenetic alterations of TERT bring additional prognostic value in NMIBC and provide a novel insight into telomere biology in cancer.
- Dual role of allele-specific DNA hypermethylation within the TERT promoter in cancerPublication . Lee, Donghyun D.; Komosa, Martin; Sudhaman, Sumedha; Leão, Ricardo; Zhang, Cindy H.; Apolonio, Joana D.; Hermanns, Thomas; Wild, Peter J.; Klocker, Helmut; Nassiri, Farshad; Zadeh, Gelareh; Diplas, Bill H.; Yan, Hai; Gallinger, Steven; Pugh, Trevor J.; Ramaswamy, Vijay; Taylor, Michael D.; Castelo-Branco, Pedro; Nunes, Nuno Miguel; Tabori, UriAberrant activation of telomerase in human cancer is achieved by various alterations within the TERT promoter, including cancer-specific DNA hypermethylation of the TERT hypermethylated oncological region (THOR). However, the impact of allele-specific DNA methylation within the TERT promoter on gene transcription remains incompletely understood. Using allele-specific next-generation sequencing, we screened a large cohort of normal and tumor tissues (n = 652) from 10 cancer types and identified that differential allelic methylation (DAM) of THOR is restricted to cancerous tissue and commonly observed in major cancer types. THOR-DAM was more common in adult cancers, which develop through multiple stages over time, than in childhood brain tumors. Furthermore, THOR-DAM was especially enriched in tumors harboring the activating TERT promoter mutations (TPMs). Functional studies revealed that allele-specific gene expression of TERT requires hypomethylation of the core promoter, both in TPM and TERT WT cancers. However, the expressing allele with hypomethylated core TERT promoter universally exhibits hypermethylation of THOR, while the nonexpressing alleles are either hypermethylated or hypomethylated throughout the promoter. Together, our findings suggest a dual role for allelespecific DNA methylation within the TERT promoter in the regulation of TERT expression in cancer.
- Epigenetic alterations in urothelial bladder cancer associated with disease outcomesPublication . Martins Nunes, Francisca; Apolónio, Joana; Mota-Pinto, A; Leão, RicardoObjectives: Bladder cancer (BLCA) is a molecular heterogeneous disease with known genetic distinctive signatures. However, DNA methylation is highly prevalent across a wide range of tumors, suggesting its potential in oncogenesis. Here, we aimed to interrogate the role of nine epigenetic alterations as diagnostic and prognostic markers in BLCA.Methods: DNA methylation, gene expression, and clinicopathological information were retrieved from The Cancer Genome Atlas data portal. Methylation values and gene expression were assessed to determine their association with normal and malignant tissue. Additionally, we studied the association between methylation values and clinicopathological variables. For the prognostic model, Kaplan-Meier Survival curves were generated. Lastly, univariate and multivariate analysis were performed to evaluate the simultaneous impact of methylation and clinicopathological variables on the risk of tumor progression and survival.Results: Nine CpG sites' methylation beta$$ \beta $$-values involved in our study demonstrated different methylation signatures between normal and malignant urothelium. Hypermethylated CpGs were overrepresented in tumor tissue (p < 0.0001). Opposingly, 4 CpG sites showed lower methylation values in tumor samples (p < 0.0001). Cg12743248high and cg17192862low are risk factors for progression-free survival, whereas cg12374721high (HR:3.003 (1.283-7.030)) also demonstrated to be the most valuable independent risk factor for disease progression and a risk factor for overall survival.Conclusions: We have identified that methylated cg12374721 shows promise as a diagnostic and independent prognostic marker in BLCA progression.
- Epigenetic therapy in urologic cancers: an update on clinical trialsPublication . Faleiro, Inês; Leão, Ricardo; Binnie, Alexandra; De Mello, Ramon Andrade; Maia, Ana Teresa; Castelo-Branco, PedroEpigenetic dysregulation is one of many factors that contribute to cancer development and progression. Numerous epigenetic alterations have been identified in urologic cancers including histone modifications, DNA methylation changes, and microRNA expression. Since these changes are reversible, efforts are being made to develop epigenetic drugs that restore the normal epigenetic patterns of cells, and many clinical trials are already underway to test their clinical potential. In this review we analyze multiple clinical trials (n=51) that test the efficacy of these drugs in patients with urologic cancers. The most frequently used epigenetic drugs were histone deacetylase inhibitors followed by antisense oligonucleotides, DNA methyltransferase inhibitors and histone demethylase inhibitors, the last of which are only being tested in prostate cancer. In more than 50% of the clinical trials considered, epigenetic drugs were used as part of combination therapy, which achieved the best results. The epigenetic regulation of some cancers is still matter of research but will undoubtedly open a window to new therapeutic approaches in the era of personalized medicine. The future of therapy for urological malignancies is likely to include multidrug regimens in which epigenetic modifying drugs will play an important role.
- Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancerPublication . Leão, Ricardo; Apolónio, Joana; Lee, Donghyun; Figueiredo, Arnaldo; Tabori, Uri; Castelo-Branco, PedroBackground Limitless self-renewal is one of the hallmarks of cancer and is attained by telomere maintenance, essentially through telomerase (hTERT) activation. Transcriptional regulation of hTERT is believed to play a major role in telomerase activation in human cancers. Main body The dominant interest in telomerase results from its role in cancer. The role of telomeres and telomere maintenance mechanisms is well established as a major driving force in generating chromosomal and genomic instability. Cancer cells have acquired the ability to overcome their fate of senescence via telomere length maintenance mechanisms, mainly by telomerase activation. hTERT expression is up-regulated in tumors via multiple genetic and epigenetic mechanisms including hTERT amplifications, hTERT structural variants, hTERT promoter mutations and epigenetic modifications through hTERT promoter methylation. Genetic (hTERT promoter mutations) and epigenetic (hTERT promoter methylation and miRNAs) events were shown to have clinical implications in cancers that depend on hTERT activation. Knowing that telomeres are crucial for cellular self-renewal, the mechanisms responsible for telomere maintenance have a crucial role in cancer diseases and might be important oncological biomarkers. Thus, rather than quantifying TERT expression and its correlation with telomerase activation, the discovery and the assessment of the mechanisms responsible for TERT upregulation offers important information that may be used for diagnosis, prognosis, and treatment monitoring in oncology. Furthermore, a better understanding of these mechanisms may promote their translation into effective targeted cancer therapies. Conclusion Herein, we reviewed the underlying mechanisms of hTERT regulation, their role in oncogenesis, and the potential clinical applications in telomerase-dependent cancers.
- THOR is a targetable epigenetic biomarker with clinical implications in breast cancerPublication . Apolónio, Joana; Dias, João S.; Fernandes, Mónica T.; Komosa, Martin; Lipman, Tatiana; Zhang, Cindy H.; Leão, Ricardo; Lee, Donghyun; Nunes, Nuno M.; Maia, Ana-Teresa; Morera, José L.; Vicioso, Luis; Tabori, Uri; Castelo-Branco, PedroBreast cancer (BC) is the most frequently diagnosed cancer and a leading cause of death among women worldwide. Early BC is potentially curable, but the mortality rates still observed among BC patients demon‑ strate the urgent need of novel and more efective diagnostic and therapeutic options. Limitless self-renewal is a hallmark of cancer, governed by telomere maintenance. In around 95% of BC cases, this process is achieved by telom‑ erase reactivation through upregulation of the human telomerase reverse transcriptase (hTERT). The hypermethylation of a specifc region within the hTERT promoter, termed TERT hypermethylated oncological region (THOR) has been associated with increased hTERT expression in cancer. However, its biological role and clinical potential in BC have never been studied to the best of our knowledge. Therefore, we aimed to investigate the role of THOR as a biomarker and explore the functional impact of THOR methylation status in hTERT upregulation in BC.