Browsing by Author "Lebreiro, Susana"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Consistently dated Atlantic sediment cores over the last 40 thousand yearsPublication . Waelbroeck, Claire; Lougheed, Bryan C.; Vazquez Riveiros, Natalia; Missiaen, Lise; Pedro, Joel; Dokken, Trond; Hajdas, Irka; Wacker, Lukas; Abbott, Peter; Dumoulin, Jean-Pascal; Thil, François; Eynaud, Frédérique; Rossignol, Linda; Fersi, Wiem; Albuquerque, Ana Luiza; Arz, Helge; Austin, William E. N.; Came, Rosemarie; Carlson, Anders E.; Collins, James A.; Dennielou, Bernard; Desprat, Stéphanie; Dickson, Alex; Elliot, Mary; Farmer, Christa; Giraudeau, Jacques; Gottschalk, Julia; Henderiks, Jorijntje; Hughen, Konrad; Jung, Simon; Knutz, Paul; Lebreiro, Susana; Lund, David C.; Lynch-Stieglitz, Jean; Malaizé, Bruno; Marchitto, Thomas; Martínez-Méndez, Gema; Mollenhauer, Gesine; Naughton, Filipa; Nave, Silvia; Nürnberg, Dirk; Oppo, Delia; Peck, Victoria; Peeters, Frank J. C.; Penaud, Aurélie; Portilho-Ramos, Rodrigo da Costa; Repschläger, Janne; Roberts, Jenny; Rühlemann, Carsten; Salgueiro, Emilia; Sanchez Goni, Maria Fernanda; Schönfeld, Joachim; Scussolini, Paolo; Skinner, Luke C.; Skonieczny, Charlotte; Thornalley, David; Toucanne, Samuel; Rooij, David Van; Vidal, Laurence; Voelker, Antje; Wary, Mélanie; Weldeab, Syee; Ziegler, MartinRapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.
- Incised valleys on the Algarve inner shelf, northern Gulf of Cadiz margin: stratigraphic architecture and controlling factors in a low fluvial supply settingPublication . Carrión-Torrente, Álvaro; Lobo, Francisco José; Puga-Bernabéu, Ángel; Luján, María; Mendes, Isabel; Hanebuth, Till J. J.; Lebreiro, Susana; García, Marga; Reguera, María Isabel; Antón, Laura; Van Rooij, David; Cerrillo-Escoriza, JavierA network of cross-shelf paleovalleys has been recognized over the paleo-inner shelf off the Gila & SIM;o-Almargem Estuary, a small fluvial drainage system that presently receives minor sediment supply in the eastern Algarve shelf, northern margin of the Gulf of Cadiz (SW Iberian Peninsula). This study is aimed at determining the driving controls that triggered substantially different paleohydrological conditions and sedimentary dynamics of ancient fluvial systems in this margin. We focus on evidences of secondary controls on valley genesis and evolution, superimposed to primary glacio-eustatic control such as antecedent geology, low fluvial supply and changing hydrodynamic regimes. The architecture and spatial distribution of these paleovalleys were interpreted based on a grid of seismic profiles with different resolutions. Likewise, a sediment core obtained in a distal position of the paleovalley system provided information about sedimentary processes during the most recent stage of valley infilling. The chronostratigraphic framework was constructed based on regional seismic horizons defined in previous studies and complemented with two AMS 14C dates obtained from bivalve shells.The inner shelf paleovalley system is composed of several incised valley features which exhibit a remarkable similar internal architecture. These inner valley features exhibit two major incision phases (from oldest to youngest; IP 2 and IP 1) that are thought to constitute a simple paleovalley system formed during the last glacial cycle. The origins of the incision are considered to be different. The older one is related to fluvial incision during the sea-level fall leading into the Last Glacial Maximum, whereas the recent one is interpreted as the result of tidal scour during the postglacial transgression. Their corresponding infillings are interpreted, respectively, as estuarine bay-fill deposits and estuary-mouth sands. Overlying the paleovalley infilling, a distinctive reflective unit is in agreement with the generation of coastal barriers and related depositional systems.The formation of the paleo-inner-shelf paleovalley system was strongly conditioned by antecedent geology, which strongly limited the generation of wide incised valleys and determined the amount of incision landward of a well-defined break of slope. Its postglacial infilling was mainly estuarine in nature, likely involving the development of a dendritic system, with numerous barriers interrupted by tidal inlets and channels in a mixed estuarine system with low fluvial supply.
- Temporal variability of flooding events of Guadiana River (Iberian Peninsula) during the middle to late Holocene: Imprints in the shallow-marine sediment recordPublication . Mendes, Isabel; Lobo, Francisco J.; Hanebuth, Till J. J.; Lopez-Quiros, Adrian; Schoenfeld, Joachim; Lebreiro, Susana; Reguera, Maria, I; Anton, Laura; Ferreira, OscarSedimentological, geochemical and benthic foraminiferal proxies were used to interpret changes of depositional environments in a mud entrapment inside the Guadiana River paleo-valley, northern Gulf of Cadiz, to understand the temporal variability of fluvial flooding events and to detect patterns of latitudinal climatic variability in western Iberia. The period between ca. 5800 and ca. 1250 cal yr BP was characterized by slowly accumulating coarse-grained sediments, high content of biogenic sand components, and high abundances of shallow-water benthic foraminiferal species. After ca. 1250 cal yr BP, the sedimentary environment was dominated by fine-grained sediments, with high abundances of opportunistic benthic foraminiferal species and successful colonizers, and high values of geochemical ratios indicative of enhanced terrigenous supply. Sedimentation rates increased drastically over the last ca. 500 years. The genesis of these environments was mainly driven by the variable frequency of fluvial flooding events driven by the regional climate variability. Low terrigenous sediment input under dry conditions prevailed in the older sedimentary unit. Flood frequency and terrigenous sediment supply increased during the younger unit. The variability of the North Atlantic Oscillation at centennial scales highly influenced the sediment supply during the last ca. 500 years, with high terrigenous supply during negative NAO conditions. Our results corroborate an N-S gradient along the Atlantic Iberia during middle and late Holocene, with more humid conditions in the northwestern and drier conditions towards the southeast. The gradient weakened over the past ca. 500 years, with increased rainfalls and flood events during the Lithe Ice Age.
