Browsing by Author "Lei, Pei"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Mechanisms of algal biomass input enhanced microbial Hg methylation in lake sedimentsPublication . Lei, Pei; Nunes, Luís; Liu, Yu-Rong; Zhong, Huan; Pan, KeEutrophication is a major environmental concern in lake systems, impacting the ecological risks of contaminants and drinking water safety. It has long been believed that eutrophication and thus algal blooms would reduce methylmercury (MeHg) levels in water, as well as MeHg bioaccumulation and trophic transfer (e.g., by growth dilution). In this study, however, we demonstrated that algae settlement and decomposition after algal blooms increased MeHg levels in sediments (54-514% higher), as evidenced by the results from sediments in 10 major lakes in China. These could in turn raise concerns about enhanced trophic transfer of MeHg and deterioration of water quality after algal blooms, especially considering that 9 out of the 10 examined lakes also serve as drinking water sources. The enhanced microbial MeHg production in sediments could be explained by the algal organic matter (AOM)-enhanced abundances of microbial methylators as well as the input of algae-inhabited microbes into sediments, but not Hg speciation in sediments: (1) Several AOM components (e.g., aromatic proteins and soluble microbial by product-like material with generally low molecular weights), rather than the bulk AOM, played key roles in enhancing the abundances of microbial methylators. The copies of Archaea-hgcA methylation genes were 51-397% higher in algae-added sediments; thus, MeHg production was also higher. (2) Input of algal biomass-inhabited microbial methylators contributed to 2-21% of total Archaea-hgcA in the 10 lake sediments with added algal biomass. (3) However, AOM-induced changes in Hg speciation, with implications on Hg availability to microbial methylators, played a minor role in enhancing microbial Hg methylation in sediments as seen in X-ray absorption near edge structure (XANES) data. Our results suggest the need to better understand the biogeochemistry and risks of contaminants in eutrophic lakes, especially during the period of algae settlement and decomposition following algal blooms.
- Relative contribution of rice and fish consumption to bioaccessibility-corrected health risks for urban residents in eastern ChinaPublication . Wang, Wenqin; Gong, Yu; Greenfield, Ben K.; Nunes, Luís; Yang, Qianqi; Lei, Pei; Bu, Wenbo; Wang, Bin; Zhao, Xiaomiao; Huang, Lei; Zhong, HuanThere are global concerns about dietary exposure to metal(loid)s in foods. However, little is known about the relative contribution of rice versus fish to multiple metal(loid) exposure for the general population, especially in Asia where rice and fish are major food sources. We compared relative contributions of rice and fish consumption to multi-metal(loid) exposure on the city-scale (Nanjing) and province-scale in China. The effects of ingestion rate, metal(loid) level, and bioaccessibility were examined to calculate modeled risk from Cu, Zn, total As (TAs), inorganic As (iAs), Se, Cd, Pb, and methylmercury (MeHg). Metal(loid) levels in rice and fish samples collected from Nanjing City were generally low, except iAs. Metal(loid) bioaccessibilities in fish were higher than those in rice, except Se. Calculated carcinogenic risks induced by iAs intake (indicated by increased lifetime cancer risk, ILCR) were above the acceptable level (1 0 − 4) in Nanjing City (median: 3 × 10− 4 for female and 4 × 10− 4 for male) and nine provinces (1.4 × 10− 4 to 5.9 × 10− 4) in China. Rice consumption accounted for 85.0% to 99.8% of carcinogenic risk. The non-carcinogenic hazard quotients (HQ) for single metals and hazard index (HI) for multi-metal exposure were < 1 in all cases, indicating of their slight non-carcinogen health effects associated. In Guangdong and Jiangsu provinces, results showed that rice and fish intake contributed similarly to the HI (i.e., 42.6% vs 57.4% in Guangdong and 54.6% vs 45.4% in Jiangsu). Sensitivity analysis indicated that carcinogenic risk was most sensitive to rice ingestion rate and rice iAs levels, while non-carcinogenic hazard (i.e., HQ and HI) was most sensitive to ingestion rate of fish and rice, and Cu concentration in rice. Our results suggest that rice is more important than fish for human dietary metal(loid) exposure risk in China, and carcinogenic risk from iAs exposure in rice requires particular attention.
