Browsing by Author "Maria, Raquel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A C-14 chronology for the Middle to Upper Palaeolithic transition at Bacho Kiro Cave, BulgariaPublication . Fewlass, Helen; Talamo, Sahra; Wacker, Lukas; Kromer, Bernd; Tuna, Thibaut; Fagault, Yoann; Bard, Edouard; McPherron, Shannon P.; Aldeias, Vera; Maria, Raquel; Martisius, Naomi L.; Paskulin, Lindsay; Rezek, Zeljko; Sinet-Mathiot, Virginie; Sirakova, Svoboda; Smith, Geoffrey M.; Spasov, Rosen; Welker, Frido; Sirakov, Nikolay; Tsanova, Tsenka; Hublin, Jean-JacquesThe stratigraphy at Bacho Kiro Cave, Bulgaria, spans the Middle to Upper Palaeolithic transition, including an Initial Upper Palaeolithic (IUP) assemblage argued to represent the earliest arrival of Upper Palaeolithic Homo sapiens in Europe. We applied the latest techniques in C-14 dating to an extensive dataset of newly excavated animal and human bones to produce a robust, high-precision radiocarbon chronology for the site. At the base of the stratigraphy, the Middle Palaeolithic (MP) occupation dates to >51,000 yr bp. A chronological gap of over 3,000 years separates the MP occupation from the occupation of the cave by H. sapiens, which extends to 34,000 cal bp. The extensive IUP assemblage, now associated with directly dated H. sapiens fossils at this site, securely dates to 45,820-43,650 cal bp (95.4% probability), probably beginning from 46,940 cal bp (95.4% probability). The results provide chronological context for the early occupation of Europe by Upper Palaeolithic H. sapiens. A new radiocarbon chronology for the Middle to Upper Palaeolithic transition at the Bulgarian site of Bacho Kiro reveals Homo sapiens-associated sediments as early as 46,940 yr bp.
- Shell we cook it? An experimental approach to the microarchaeological record of shellfish roastingPublication . Aldeias, Vera; Gur-Arieh, Shira; Maria, Raquel; Monteiro, Patricia; Cura, PedroIn this paper, we investigate the microarchaeological traces and archaeological visibility of shellfish cooking activities through a series of experimental procedures with direct roasting using wood-fueled fires and controlled heating in a muffle furnace. An interdisciplinary geoarchacological approach, combining micromorphology, FTIR (in transmission and ATR collection modes), TGA and XRD, was used to establish a baseline on the mineralogical transformation of heated shells from aragonite to calcite and diagnostic sedimentary traces produced by roasting fire features. Our experimental design focused on three main types of roasting procedures: the construction of shallow depressions with heated rocks (pebble cuvette experiments), placing shellfish on top of hot embers and ashes (fire below experiment), and by kindling short-lived fires on top of shellfish (fire above experiments). Our results suggest that similar shellfish roasting procedures will largely create microstratigraphic signatures of anthropogenically reworked combusted material spatially "disconnected" from the actual combustion locus. The construction of shallow earth ovens might entail an increased archaeological visibility, and some diagnostic signatures of in situ hearths can be obtained by fire below roasting activities. We also show that macroscopic visual modifications and mineralogical characterization of discarded shellfish might be indicative of specific cooking activities versus secondary burning.
