Browsing by Author "Montesi, Giovanni"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Assessing thermal maturity through a multi-proxy approach: a case study from the Permian Faraghan Formation (Zagros Basin, Southwest Iran)Publication . Spina, Amalia; Cirilli, Simonetta; Sorci, Andrea; Schito, Andrea; Clayton, Geoff; Corrado, Sveva; Fernandes, Paulo; Galasso, Francesca; Montesi, Giovanni; Pereira, Zelia; Rashidi, Mehrab; Rettori, RobertoThis study focuses on the thermal maturity of Permian deposits from the Zagros Basin, Southwest Iran, employing both optical methods (Thermal Alteration Index, Palynomorph Darkness Index, Vitrinite Reflectance, UV Fluorescence) and geochemical analyses of organic matter (Rock Eval Pyrolysis and MicroRaman spectroscopy) applied to the Faraghan Formation along two investigated Darreh Yas and Kuh e Faraghan surface sections. Furthermore, an integrated palynofacies and lithofacies analysis was carried out in order to integrate the few studies on the depositional environment. The Faraghan Formation, which is widely distributed in the Zagros area, generally consists of shale intercalated with sandstones and pebble conglomerates in the lower part, followed by a succession of sandstone, siltstone and shaly intercalations and with carbonate levels at the top. The integrated palynofacies and lithofacies data confirm a coastal depositional setting evolving upwards to a shallow marine carbonate environment upwards. Rock Eval Pyrolysis and Vitrinite Reflectance analysis showed that the organic matter from samples of the Darreh Yas and Kuh e Faraghan sections fall in the mature to postmature range with respect to the oil to gas generation window, restricting the thermal maturity range proposed by previous authors. Similar results were obtained with MicroRaman spectroscopy and optical analysis such as Thermal Alteration Index and UV Fluorescence. Palynomorph Darkness Index values were compared with Rock Eval Pyrolysis and vitrinite reflectance values and discussed for the first time in the late stage of oil generation.
- Thermal history and basin evolution of the Moatize - Minjova Coal Basin (N'Condedzi sub-basin, Mozambique) constrained by organic maturation levelsPublication . Galasso, Francesca; Manuel Carvalho Fernandes, Paulo; Montesi, Giovanni; Marques, Joao; Spina, Amalia; Pereira, ZeliaKerogen concentrates obtained from Lopingian (Late Permian) to Upper Triassic mudrock lithologies of seven coal exploration boreholes, drilled in the Moatize - Minjova Coal Basin (N'Condedzi sub-basin, Mozambique), were studied by means of vitrinite reflectance (VR), spore fluorescence and spore colour, in order to constrain the thermal history and basin evolution by organic maturation levels. VR increases with depth, indicating organic maturation related to sediment burial for most of the boreholes. Modelled VR data indicate a regional palaeogeothermal gradient between 35 and 40 degrees C/km. Lower Jurassic doleritic intrusions observed in three boreholes had only local thermal effects without affecting the regional palaeogeothermal gradient. Two boreholes located near the basin margin show high palaeogeothermal gradients suggesting thermal processes other than heating due to burial were involved. These processes may have involved hot diagenetic fluids circulating through fault zones and/or permeable lithologies, locally elevating geothermal gradients. Circulation of these fluids was induced by lithostatic pressure due to rapid rates of sedimentation. These high sedimentation rates lead to the accumulation of a thick succession (over 2000 m) of Lopingian (Late Permian) to Upper Triassic siliciclastic sediments. All the organic maturation indices measured and the age of the successions indicate that organic maturation occurred during or after Late Triassic times. However, the presence of reworked Permian palynomorphs into Upper Triassic sediments and the absence of Middle Triassic sediments indicate an exhumation and erosion of Permian strata in Middle Triassic times. The organic maturation levels of the reworked palynomorph population are considerably higher than the indigenous Upper Triassic population, indicating that they attained higher burial temperatures prior to being reworked.