Browsing by Author "Moreira, J. C."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- A diffuse reflectance comparative study of benzil inclusion within p-tert-butylcalix[n]arenes (n=4, 6, and 8) and silicalitePublication . Ferreira, Luís F. Vieira; Machado, I. Ferreira; Oliveira, A. S.; Ferreira, M. R. Vieira; Silva, José P. da; Moreira, J. C.Diffuse reflectance and laser-induced techniques were used to access photochemical and photophysical processes of benzil in solid supports, namely p-tert-butylcalix[n]arenes with n = 4, 6, and 8. A comparative study was performed using these results and those obtained with another electronically inert support, silicalite, which is a hydrophobic zeolite. In the latter substrate, ground-state benzil has the two carbonyl groups in an s-trans planar conformation while in the calixarenes a distribution of conformers exists, largely dominated by skew conformations where the carbonyl groups are twisted one to the other. In all substrates, room-temperature phosphorescence was obtained in air-equilibrated samples. The decay times vary greatly and the largest lifetime was obtained for benzil/p-tert-butylcalix[6]arene, showing that this host cavity well accommodates benzil, enhancing its room-temperature phosphorescence. p-tert-Butylcalix[6] and [8]arene molecules provide larger hydrophobic cavities than silicalite, and inclusion complexes are formed with these hosts and benzil as guest; p-tert-butylcalix[4]arene does not include benzil. This probe is deposited outside the calix[41 cavity, in the form of microcrystals. Triplet-triplet absorption of benzil was detected in all cases and is predominant in the silicalite channel inclusion case. Benzil ketyl radical formation occurs with inclusion in calix[6]arene and calix[8]arene. In the three cases, benzoyl radical was detected at long times (in the millisecond time scale). Product analysis and identification clearly show that the main detected degradation photoproducts in all substrates are benzoyl radical derivatives. Calix[6] and [8]arenes are able to supply hydrogen atoms that allow also another reaction, the reduction to benzoin through benzil ketyl radical formation.
- Surface photochemistry: dibenzo-p-dioxin adsorbed onto silicalite, cellulose and silicaPublication . Ferreira, Luís F. Vieira; Silva, José P. da; Machado, I. Ferreira; Branco, T. J. F.; Moreira, J. C.Laser-induced luminescence of argon purged and air-equilibrated samples of dibenzo-p-dioxin adsorbed onto three different solid powdered supports, silicalite, cellulose and silica, revealed the existence of both fluorescence and phosphorescence emissions at room temperature. A remarkable difference in transient absorption spectra was found when dibenzo-p-dioxin was included within the narrow internal channels of silicalite: triplet-triplet absorption of dibenzo-p-dioxin was detected in the silicalite case as a host, simultaneous with radical cation formation immediately after pulsed laser excitation (in the hundreds of nanoseconds time scale) while in the case of cellulose and silica as adsorbents, absorption transients arising from 2,2'-biphenylquinone and possibly from the spiroketone were found. For all hosts dibenzo-p-dioxin exhibits a transient band peaking at 330-340 nm in the microsecond and millisecond time scales, which we assigned to the biradical of dibenzo-p-dioxin. Diffuse reflectance laser flash photolysis and chromatographic techniques provided complementary information, the former about transient species and the latter regarding the final products formed after laser irradiation at 266 nm. Product analysis and identification clearly show that the photodegradation products are dependent on the host, the photochemistry being much more rich and complex in the cellulose and silica cases, where the main detected photoproduts were 2,2'-dihydroxybiphenyl and 1-hydroxydibenzofuran. In the case of silicalite as host, which has a channel-like internal structure and reduced space available for the guest dioxin, photodegradation reactions are highly reduced or even inhibited and no photodegradation products were detected. (c) 2006 Elsevier B.V. All rights reserved.
- Surface photochemistry: photodegradation study of pyrene adsorbed onto microcrystalline cellulose and silicaPublication . Oliveira, A. S.; Ferreira, Luís F. Vieira; Silva, José P. da; Moreira, J. C.Ground-state diffuse reflectance, time resolved laser-induced luminescence, diffuse reflectance laser flash-photolysis transient absorption and chromatographic techniques were used to elucidate the photodegradation processes of pyrene adsorbed onto microcrystalline cellulose and silica. Ground-state diffuse reflectance showed that on both substrates low concentrations display absorption of pyrene monomers. At high concentrations spectral changes attributed to aggregate formation were observed. Laser induced fluorescence showed that pyrene onto microcrystalline cellulose mainly presents fluorescence from monomers, while for silica, excimer-like emission was observed from low surface loadings (greater than or equal to 0.5 mumol g(-1)). Transient absorption and photodegradation studies were performed at concentrations where mainly monomers exist. On silica, pyrene presents transient absorption from its radical cation. On microcrystalline cellulose both radical cation, radical anion and pyrene triplet-triplet absorption were detected. Irradiation followed by chromatographic analysis showed that pyrene decomposes on both substrates. For pyrene on microcrystalline cellulose 1-hydroxypyrene was the main identified photoproduct since in the absence of oxygen further oxidation of 1-hydroxypyrene was very slow. For pyrene on silica photodegradation was very efficient. Almost no 1-hydroxypyrene was detected since in the presence of oxygen it is quickly oxidized to other photooxidation products. On both substrates, pyrene radical cation is the intermediate leading to photoproducts and oxygen it is not involved in its formation.