Browsing by Author "Muller-Karger, Frank E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Deep-sea ecosystems of the North Atlantic Ocean: discovery, status, function and future challengesPublication . Allcock, A. Louise; Amon, Diva J.; Bridges, Amelia E. H.; Colaço, Ana; Escobar-Briones, Elva; Hilário, Ana; Howell, Kerry L.; Mestre, Nélia; Muller-Karger, Frank E.; Priede, Imants G.; Snelgrove, Paul V. R.; Sealey, Kathleen Sullivan; Xavier, Joana R.; Addamo, Anna M.; Amaro, Teresa; Bandara, Gayathra; Bax, Narissa; Braga-Henriques, Andreia; Brandt, Angelika; Brix, Saskia; Cambronero-Solano, Sergio; Cedeño – Posso, Cristina; Copley, Jonathan T.; Cordes, Erik; Cortés, Jorge; Croquer, Aldo; Cuvelier, Daphne; Davies, Jaime S.; Durden, Jennifer M.; Esquete, Patricia; Foster, Nicola L.; Frutos, Inmaculada; Gasbarro, Ryan; Gates, Andrew R.; Gomes, Marta; Goodwin, Lucy V. M.; Horton, Tammy; Hourigan, Thomas; Hoving, Henk-Jan; Jones, Daniel O. B.; Joshi, Siddhi; Kingon, Kelly C.; Lörz, Anne-Nina; Martins, Ana; Merten, Véronique; Metaxas, Anna; Milligan, Rosanna J.; Molodtsova, Tina N.; Morato, Telmo; Morrissey, Declan; Naranjo-Elizondo, Beatriz; Narayanaswamy, Bhavani E.; Olafsdottir, Steinunn H.; Parimbelli, Alexa; Peña, Marian; Piechaud, Nils; Ragnarsson, Stefan; Ramalho, Sofia P.; Rodrigues, Clara F.; Ross, Rebecca E.; Saeedi, Hanieh; Santos, Régis; Schwing, Patrick T.; Serpa, Tiago; Shantharam, Arvind K.; Stevenson, Angela; Yánez-Suárez, Ana Belén; Sutton, Tracey T.; Svavarsson, Jörundur; Taylor, Michelle L.; Grient, Jesse van der; Zwerschke, NadeschaThe North Atlantic is an ocean basin with a diversity of deep-sea ecosystems. Here we provide a summary of the topography and oceanography of the North Atlantic including the Gulf of Mexico and Caribbean Sea, provide a brief overview of the history of scientific research therein, and review the current status of knowledge of each of 18 pelagic and benthic deep-sea ecosystems, with a particular focus on knowledge gaps. We analyse biodiversity data records across the North Atlantic and highlight spatial data gaps that could provide important foci for future expeditions. We note particular data gaps in EEZs of nations within and bordering the Caribbean Sea. Our data provide a baseline against which progress can be tracked into the future. We review human impacts caused by fishing, shipping, mineral extraction, introduction of substances, and climate change, and provide an overview of international, regional and national measures to protect ecosystems. We recommend that scientific research in the deep sea should focus on increasing knowledge of the distribution and the connectivity of key species and habitats, and increasing our understanding of the processes leading to the delivery of ecosystem services. These three pillars - distribution, connectivity, ecosystem function - will provide the knowledge required to implement conservation and management measures to ensure that any deep-sea development in the future is sustainable. Infrastructure and capacity are unevenly distributed and implementation of strategies that will lead to more equitable deep-sea science is required to ensure that essential science can be delivered.
- Toward a coordinated global observing system for seagrasses and marine macroalgaePublication . Duffy, J. Emmett; Benedetti-Cecchi, Lisandro; Trinanes, Joaquin; Muller-Karger, Frank E.; Ambo-Rappe, Rohani; Boström, Christoffer; Buschmann, Alejandro H.; Byrnes, Jarrett; Coles, Robert G.; Creed, Joel; Cullen-Unsworth, Leanne C.; Diaz-Pulido, Guillermo; Duarte, Carlos M.; Edgar, Graham J.; Fortes, Miguel; Goni, Gustavo; Hu, Chuanmin; Huang, Xiaoping; Hurd, Catriona L.; Johnson, Craig; Konar, Brenda; Krause-Jensen, Dorte; Krumhansl, Kira; Macreadie, Peter; Marsh, Helene; McKenzie, Len J.; Mieszkowska, Nova; Miloslavich, Patricia; Montes, Enrique; Nakaoka, Masahiro; Norderhaug, Kjell Magnus; Norlund, Lina M.; Orth, Robert J.; Prathep, Anchana; Putman, Nathan F.; Samper-Villarreal, Jimena; Serrao, Ester; Short, Frederick; Pinto, Isabel Sousa; Steinberg, Peter; Stuart-Smith, Rick; Unsworth, Richard K. F.; van Keulen, Mike; van Tussenbroek, Brigitta I.; Wang, Mengqiu; Waycott, Michelle; Weatherdon, Lauren V.; Wernberg, Thomas; Yaakub, Siti MaryamIn coastal waters around the world, the dominant primary producers are benthic macrophytes, including seagrasses and macroalgae, that provide habitat structure and food for diverse and abundant biological communities and drive ecosystem processes. Seagrass meadows and macroalgal forests play key roles for coastal societies, contributing to fishery yields, storm protection, biogeochemical cycling and storage, and important cultural values. These socio-economically valuable services are threatened worldwide by human activities, with substantial areas of seagrass and macroalgal forests lost over the last half-century. Tracking the status and trends in marine macrophyte cover and quality is an emerging priority for ocean and coastal management, but doing so has been challenged by limited coordination across the numerous efforts to monitor macrophytes, which vary widely in goals, methodologies, scales, capacity, governance approaches, and data availability. Here, we present a consensus assessment and recommendations on the current state of and opportunities for advancing global marine macrophyte observations, integrating contributions from a community of researchers with broad geographic and disciplinary expertise. With the increasing scale of human impacts, the time is ripe to harmonize marine macrophyte observations by building on existing networks and identifying a core set of common metrics and approaches in sampling design, field measurements, governance, capacity building, and data management. We recommend a tiered observation system, with improvement of remote sensing and remote underwater imaging to expand capacity to capture broad-scale extent at intervals of several years, coordinated with strati fied in situ sampling annually to characterize the key variables of cover and taxonomic or functional group composition, and to provide ground-truth. A robust networked system of macrophyte observations will be facilitated by establishing best practices, including standard protocols, documentation, and sharing of resources at all stages of work flow, and secure archiving of open-access data. Because such a network is necessarily distributed, sustaining it depends on close engagement of local stakeholders and focusing on building and long-term maintenance of local capacity, particularly in the developing world. Realizing these recommendations will producemore effective, efficient, and responsive observing, a more accurate global picture of change in vegetated coastal systems, and stronger international capacity for sustaining observations.
