Browsing by Author "Pérez-Sánchez, Jaume"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Disruption of gut integrity and permeability contributes to enteritis in a fish-parasite model: a story told from serum metabolomicsPublication . Sitjà-Bobadilla, Ariadna; Gil-Solsona, Rubén; Estensoro, Itziar; Piazzon, M. C; Martos-Sitcha, Juan A; Picard-Sánchez, Amparo; Fuentes, Juan; Sancho, Juan V; Calduch-Giner, Josep A; Hernández, Félix; Pérez-Sánchez, JaumeBackground In the animal production sector, enteritis is responsible for serious economic losses, and intestinal parasitism is a major stress factor leading to malnutrition and lowered performance and animal production efficiency. The effect of enteric parasites on the gut function of teleost fish, which represent the most ancient bony vertebrates, is far from being understood. The intestinal myxozoan parasite Enteromyxum leei dwells between gut epithelial cells and causes severe enteritis in gilthead sea bream (Sparus aurata), anorexia, cachexia, growth impairment, reduced marketability and increased mortality. Methods This study aimed to outline the gut failure in this fish-parasite model using a multifaceted approach and to find and validate non-lethal serum markers of gut barrier dysfunction. Intestinal integrity was studied in parasitized and non-parasitized fish by immunohistochemistry with specific markers for cellular adhesion (E-cadherin) and tight junctions (Tjp1 and Cldn3) and by functional studies of permeability (oral administration of FITC-dextran) and electrophysiology (Ussing chambers). Serum samples from parasitized and non-parasitized fish were analyzed using non-targeted metabolomics and some significantly altered metabolites were selected to be validated using commercial kits. Results The immunodetection of Tjp1 and Cldn3 was significantly lower in the intestine of parasitized fish, while no strong differences were found in E-cadherin. Parasitized fish showed a significant increase in paracellular uptake measured by FITC-dextran detection in serum. Electrophysiology showed a decrease in transepithelial resistance in infected animals, which showed a diarrheic profile. Serum metabolomics revealed 3702 ions, from which the differential expression of 20 identified compounds significantly separated control from infected groups in multivariate analyses. Of these compounds, serum inosine (decreased) and creatine (increased) were identified as relevant and validated with commercial kits. Conclusions The results demonstrate the disruption of tight junctions and the loss of gut barrier function, a metabolomic profile of absorption dysfunction and anorexia, which further outline the pathophysiological effects of E. leei.
- Immune status and hepatic antioxidant capacity of Gilthead Seabream Sparus aurata juveniles fed yeast and microalga derived β-glucansPublication . Reis, Bruno; Gonçalves, Ana Teresa; Santos, Paulo; Sardinha, Manuel; Conceição, Luís E. C.; Serradeiro, Renata; Pérez-Sánchez, Jaume; Calduch-Giner, Josep; Schmid-Staiger, Ulrike; Frick, Konstantin; Dias, Jorge; Costas, BenjamínThis work aimed to evaluate the effects of dietary supplementation with β-glucans extracted from yeast (Saccharomyces cerevisiae) and microalga (Phaeodactylum tricornutum) on gene expression, oxidative stress biomarkers and plasma immune parameters in gilthead seabream (Sparus aurata) juveniles. A practical commercial diet was used as the control (CTRL), and three others based on CTRL were further supplemented with different β-glucan extracts. One was derived from S. cerevisiae (diet MG) and two different extracts of 21% and 37% P. tricornutum-derived β-glucans (defined as Phaeo21 and Phaeo37), to give a final 0.06% β-glucan dietary concentration. Quadruplicate groups of 95 gilthead seabream (initial body weight: 4.1 ± 0.1 g) were fed to satiation three times a day for 8 weeks in a pulse-feeding regimen, with experimental diets intercalated with the CTRL dietary treatment every 2 weeks. After 8 weeks of feeding, all groups showed equal growth performance and no changes were found in plasma innate immune status. Nonetheless, fish groups fed β-glucans supplemented diets showed an improved anti-oxidant status compared to those fed CTRL at both sampling points (i.e., 2 and 8 weeks). The intestinal gene expression analysis highlighted the immunomodulatory role of Phaeo37 diet after 8 weeks, inducing an immune tolerance effect in gilthead seabream intestine, and a general down-regulation of immune-related gene expression. In conclusion, the results suggest that the dietary pulse administration of a P. tricornutum 37% enriched-β-glucans extract might be used as a counter-measure in a context of gut inflammation, due to its immune-tolerant and anti-oxidative effects.
- Sustainable fish meal-free diets for gilthead sea bream (Sparus aurata): integrated biomarker response to assess the effects on growth performance, lipid metabolism, antioxidant defense and immunological statusPublication . Fernandes, Ana M.; Calduch-Giner, Josep Àlvar; Pereira, Gabriella V.; Fachadas Gato Coelho Gonçalves, Ana Teresa; Dias, Jorge; Johansen, Johan; Silva, Tomé; Naya-Català, Fernando; Piazzon, Carla; Sitjà-Bobadilla, Ariadna; Costas, Benjamin; Conceição, Luís E. C.; Fernandes, Jorge M. O.; Pérez-Sánchez, JaumeThe growth of the aquaculture industry requires more sustainable and circular economy-driven aquafeed formulas. Thus, the goal of the present study was to assess in farmed gilthead sea bream (Sparus aurata L.) how different combinations of novel and conventional fish feed ingredients supported proper animal performance in terms of growth and physiological biomarkers of blood/liver/head kidney. A 77-day feeding trial was conducted with three experimental diets (PAP, with terrestrial processed animal protein from animal by-products; NOPAP, without processed animal protein from terrestrial animal by-products; MIX, a combination of alternative ingredients of PAP and NOPAP diets) and a commercial-type formulation (CTRL), and their effects on growth performance and markers of endocrine growth regulation, lipid metabolism, antioxidant defense and inflammatory condition were assessed at circulatory and tissue level (liver, head kidney). Growth performance was similar among all dietary treatments. However, fish fed the PAP diet displayed a lower feed conversion and protein efficiency, with intermediate values in MIX-fed fish. Such gradual variation in growth performance was supported by different biomarker signatures that delineated a lower risk of oxidation and inflammatory condition in NOPAP fish, in concurrence with an enhanced hepatic lipogenesis that did not represent a risk of lipoid liver degeneration.