Browsing by Author "Samper-Villarreal, Jimena"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Seagrasses benefit from mild anthropogenic nutrient additionsPublication . Vieira, Vasco M. N. C. S.; Lobo-Arteaga, Jorge; Santos, Rafael; Leitão-Silva, David; Veronez, A.; Neves, Joana M.; Nogueira, Marta; Creed, Joel C.; Bertelli, Chiara M.; Samper-Villarreal, Jimena; Pettersen, Mats R. S.Seagrasses are declining globally, in large part due to increased anthropogenic coastal nutrient loads that enhance smothering by macroalgae, attenuate light, and are toxic when in excessive concentrations of inorganic nitrogen and phosphorus. However, as sanitation is improved many seagrass meadows have been observed to recover, with a few studies suggesting that they may even benefit from mild anthropogenic nutrient additions. Monitoring seagrass demography and health has faced difficulties in establishing the adequate variables and metrics. Such uncertainty in the methods has caused uncertainty of the significance of results presented and compromised extrapolations to other seasons, areas, or species. One solution has come from within the plant self-thinning theories. During the 1980s, an interspecific boundary line (IBL) was determined as the upper limit of the combination of plant density and above-ground biomass for any stand on Earth, setting their maximum possible efficiency in space occupation. Recently, two meta-analyses to determine specific IBLs for algae and for seagrasses have been performed. The recently updated seagrass dataset comprises 5,052 observations from 78 studies on 18 species. These IBLs opened new perspectives for monitoring: the observed distance of a stand to the respective IBL (i.e., each stand's relative efficiency of space occupation) was demonstrated to be a valuable indicator of a population's health. Thus, this metric can be used to determine the impact of nutrients and pollutants on algae and seagrass populations. Furthermore, because the IBLs are common to all species, they may be used to compare all species from any location worldwide. This novel approach showed that Halodule wrightii, Halodule beaudettei, Halophila baillonii, Zostera marina, and Zostera noltei meadows benefit from anthropogenic additions of nitrogen and phosphorus, as long as these additions are moderate. In fact, the healthier Z. noltei meadows in Portugal (and among the healthiest meadows worldwide) were the ones exposed to effluents from wastewater treatment plants (WWTP) and a food factory. We conclude that those effluents are providing water with enough quality and that their optimal management should coordinate the technological solutions of the WWTP with the natural potential of seagrass meadows as water purifiers and biomass producers.
- Toward a coordinated global observing system for seagrasses and marine macroalgaePublication . Duffy, J. Emmett; Benedetti-Cecchi, Lisandro; Trinanes, Joaquin; Muller-Karger, Frank E.; Ambo-Rappe, Rohani; Boström, Christoffer; Buschmann, Alejandro H.; Byrnes, Jarrett; Coles, Robert G.; Creed, Joel; Cullen-Unsworth, Leanne C.; Diaz-Pulido, Guillermo; Duarte, Carlos M.; Edgar, Graham J.; Fortes, Miguel; Goni, Gustavo; Hu, Chuanmin; Huang, Xiaoping; Hurd, Catriona L.; Johnson, Craig; Konar, Brenda; Krause-Jensen, Dorte; Krumhansl, Kira; Macreadie, Peter; Marsh, Helene; McKenzie, Len J.; Mieszkowska, Nova; Miloslavich, Patricia; Montes, Enrique; Nakaoka, Masahiro; Norderhaug, Kjell Magnus; Norlund, Lina M.; Orth, Robert J.; Prathep, Anchana; Putman, Nathan F.; Samper-Villarreal, Jimena; Serrao, Ester; Short, Frederick; Pinto, Isabel Sousa; Steinberg, Peter; Stuart-Smith, Rick; Unsworth, Richard K. F.; van Keulen, Mike; van Tussenbroek, Brigitta I.; Wang, Mengqiu; Waycott, Michelle; Weatherdon, Lauren V.; Wernberg, Thomas; Yaakub, Siti MaryamIn coastal waters around the world, the dominant primary producers are benthic macrophytes, including seagrasses and macroalgae, that provide habitat structure and food for diverse and abundant biological communities and drive ecosystem processes. Seagrass meadows and macroalgal forests play key roles for coastal societies, contributing to fishery yields, storm protection, biogeochemical cycling and storage, and important cultural values. These socio-economically valuable services are threatened worldwide by human activities, with substantial areas of seagrass and macroalgal forests lost over the last half-century. Tracking the status and trends in marine macrophyte cover and quality is an emerging priority for ocean and coastal management, but doing so has been challenged by limited coordination across the numerous efforts to monitor macrophytes, which vary widely in goals, methodologies, scales, capacity, governance approaches, and data availability. Here, we present a consensus assessment and recommendations on the current state of and opportunities for advancing global marine macrophyte observations, integrating contributions from a community of researchers with broad geographic and disciplinary expertise. With the increasing scale of human impacts, the time is ripe to harmonize marine macrophyte observations by building on existing networks and identifying a core set of common metrics and approaches in sampling design, field measurements, governance, capacity building, and data management. We recommend a tiered observation system, with improvement of remote sensing and remote underwater imaging to expand capacity to capture broad-scale extent at intervals of several years, coordinated with strati fied in situ sampling annually to characterize the key variables of cover and taxonomic or functional group composition, and to provide ground-truth. A robust networked system of macrophyte observations will be facilitated by establishing best practices, including standard protocols, documentation, and sharing of resources at all stages of work flow, and secure archiving of open-access data. Because such a network is necessarily distributed, sustaining it depends on close engagement of local stakeholders and focusing on building and long-term maintenance of local capacity, particularly in the developing world. Realizing these recommendations will producemore effective, efficient, and responsive observing, a more accurate global picture of change in vegetated coastal systems, and stronger international capacity for sustaining observations.