Browsing by Author "Sharon, Yoni"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Effects of in situ shading on the photophysiology of Zostera marina and Cymodocea nodosaPublication . Silva, João; Barrote, Isabel; Albano, Sílvia; Costa, Monya; Neves, Pedro; Graça, Gonçalo Nuno Santos Neto da; Sharon, Yoni; Beer, S.; Santos, RuiThe effects of light reduction were investigated in natural stands of the seagrasses Zostera marina and Cymodocea nodosa in Ria Formosa coastal lagoon, southern Portugal. Four shading plots and a control were set in each of two neighbouring meadows (2-3 m depth), each dominated by one species. The experiment lasted for 3 weeks, at the end of which the response of plant photosynthesis to light was determined via oxygen electrode measurements. Tissue samples were also analysed for photosynthetic pigment, soluble protein, soluble sugar and malondialdehyde contents. All plants presented a shade-adapted profile, mostly revealed by their biochemical composition. In both species the chlorophyll a/chlorophyll b ratio decreased sharply whereas the total chlorophyll/total carotenoids and the total chlorophyll/soluble protein ratios increased. Soluble protein content was reduced more noticeably in Z. marina. Soluble sugars dropped almost 40% in Z. marina leaves and roots, a more pronounced effect than the one observed in C. nodosa. Overall, Z. marina revealed to be more sensitive than C. nodosa to reductions in incident irradiance, suggesting that it will be more sensitive to human-induced disturbances that result in an increase of water turbidity.
- Measuring seagrass photosynthesis: methods and applicationsPublication . Silva, João; Sharon, Yoni; Santos, Rui; Beer, SvenThis review originates from a keynote lecture given at the recent 8th Group for Aquatic Productivity (GAP) workshop held in Eilat, Israel. Here we examine the most important methodologies for photosynthetic measurements in seagrasses and evaluate their applications, advantages and disadvantages, and also point out the most relevant results. The most commonly used methodologies are based on oxygen (O(2)) evolution and chlorophyll fluorescence measurements. O(2)-based methodologies allowed for the first approaches to evaluate seagrass productivity, whereas chlorophyll a fluorescence has more recently become the choice method for in situ experiments, particularly in evaluating photosynthetic responses to light and assessing stress responses. New methodologies have also emerged, such as O(2) optodes, underwater CO(2) flux measurements, geo-acoustic inversion and the eddy correlation technique. However, these new methods still need calibration and validation. Our analysis of the literature also reveals several significant gaps in relevant topics concerning seagrass photosynthesis, namely the complete absence of studies on deep-growing populations that photosynthesise under extreme low light conditions and the uncertainties about the true degree of seagrass carbon limitation, which limits our ability to predict responses to global changes.
- Photosynthetic responses of Haalophila stipulacea to a light gradient. I. In situ energy partitioning of non-photochemical quenchingPublication . Runcie, John W.; Paulo, Diogo; Santos, Rui; Sharon, Yoni; Beer, Sven; Silva, JoãoThe quantum yield of photosystem II (phi(II), also termed Delta F/F-m' or F-v/F-m in light- or dark-acclimated plants, respectively) of the tropical seagrass Halophila stipulacea was measured in situ using modulated fluorescence techniques over diel periods at a range of depths. Photosynthetic electron transport rates (ETRs), as derived from phi(II) values at specific ambient photosynthetically available radiation (PAR) irradiances, increased in direct proportion to increasing irradiance in the morning and, at shallow sites (7 to 10 m), reached saturating rates and then declined in the afternoon with lower PAR-specific ETRs. On the other hand, plants at 32 to 33 m showed no saturation even at midday, and the percentage reduction in PAR-specific afternoon ETRs was less than that of the shallower plants. The use of an automated shutter in the measuring device enabled non-photochemical quenching due to down-regulation and basal intrinsic non-radiative decay to be distinguished. While midday values of down-regulation were lower in deeper water, basal intrinsic non-radioactive decay remained fairly constant at 30 to 40% at all depths, with more variation in shallow waters. The maximal phi(II) (i.e. F-v/F-m) reached similar values at midnight regardless of depth. H. stipulacea acclimates to the widely varying irradiances across this depth gradient by regularly modulating down-regulation-based non-photochemical quenching processes, while dissipating a large proportion of light energy through intrinsic decay regardless of depth.
- Photosynthetic responses of Halophila stipulacea to a light gradient. II. Acclimations following transplantationPublication . Sharon, Yoni; Silva, João; Santos, Rui; Runcie, John W.; Chernihovsky, Mark; Beer, SvenHalophila stipulacea is the dominant seagrass in the Gulf of Aqaba (northern Red Sea), where it grows from the intertidal to depths exceeding 50 m. Its successful growth under such a broad irradiance gradient shows either a high plasticity or is caused by longer-term adaptations to the various depths, possibly resulting in the formation of ecotypes. In April 2008 we transplanted shoots of this seagrass between the extreme depths of its distribution at the study site (8 and 33 m) in order to evaluate its acclimation potential to various irradiances. We compared photosynthetic parameters derived from light response curves generated by PAM fluorometry (so-called rapid light curves, RLC) and measured chlorophyll a and b concentrations. RLCs from the shallow (similar to 400 pmol photons m(-2) s(-1) at midday) and deep (similar to 35 pmol photons m(-2) s(-1) at midday) sites were characteristic for high- and low-light growing plants, respectively, and the transplanted seagrasses acclimated to their new environments within 6 d, at which time their RLCs resembled those of the original plants growing at the depths to which they had been transplanted, Concentrations of both chlorophyll a and b decreased or increased when the plants were transferred to high- vs. low-light environments, respectively, but the chlorophyll a:b ratios remained constant. These fast changes in photosynthetic responses and light absorption characteristics in response to changing light environments points to Halophila stipulacea as being a highly plastic seagrass with regard to irradiance, which may partly explain its abundance across a wide range of irradiances along the depth gradient that it occupies.
