Browsing by Author "Silva, Joana T."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Development of an organic culture medium for autotrophic production of chlorella vulgaris biomassPublication . Machado, Adriana; Pereira, Hugo; Costa, Margarida; Santos, Tamara; Carvalho, Bernardo; Soares, Maria; Quelhas, Pedro; Silva, Joana T.; Trovão, Mafalda; Barros, Ana; Varela, João; Vicente, António A.; Silva, JoanaMicroalgal biomass has gained increasing attention in the last decade for various biotechnological applications, including human nutrition. Certified organic products are currently a growing niche market in which the food industry has shown great interest. In this context, this work aimed at developing a certified organic culture medium for the production of autotrophic Chlorella vulgaris biomass. A preliminary assay in 2 L bubble column photobioreactors was performed in order to screen di erent commercial organic substrates (OS) at a normalized concentration of N (2 mmol L1). The highest growth performance was obtained using EcoMix4 and Bioscape which showed similar biomass concentrations compared to the synthetic culture medium (control). In order to meet the nutrient needs of Chlorella, both OS underwent elemental analyses to assess their nutrient composition. The laboratory findings allowed the development of a final organic culture medium using a proportion of Bioscape/EcoMix4 (1:1.2, m/m). This organic culture medium was later validated outdoors in 125 L flat panel and 10 m3 tubular flow through photobioreactors. The results obtained revealed that the developed organic medium led to similar microalgal growth performance and biochemical composition of produced biomass, as compared to the traditional synthetic medium. Overall, the formulated organic medium was e ective for the autotrophic production of organic C. vulgaris biomass.
- Effects of outdoor and indoor cultivation on the polar lipid composition and antioxidant activity of Nannochloropsis oceanica and Nannochloropsis limnetica: A lipidomics perspectivePublication . Couto, Daniela; Conde, Tiago A.; Melo, Tânia; Neves, Bruna; Costa, Margarida; Cunha, Pedro; Guerra, Inês; Correia, Nádia; Silva, Joana T.; Pereira, Hugo; Varela, João; Silva, Joana; Domingues, Rosário; Domingues, PedroNannochloropsis is a genus of eicosapentaenoic acid-rich microalgae with high levels of value-added polar lipids. However, the polar lipid composition of microalgal biomass is highly dependent on culture conditions (e.g., light or temperature), which are significantly different under indoor and outdoor culture conditions. In this study, we sought to investigate the plasticity of the polar lipid profile of a marine (N. oceanica) and a freshwater (N. limnetica) species of Nannochloropsis grown in indoor and outdoor photobioreactors. To this end, the polar lipidome and fatty acid profiles were characterized by liquid chromatography-mass spectrometry (LC-MS), and gas chromatography-mass spectrometry (GC-MS), respectively. In addition, the antioxidant activity of their lipid extracts was assessed. The highest lipid contents were obtained for the two species grown indoors. LC-MS analysis identified 239 different polar lipid species, of which 220 were shared by all experimental groups. Candidate lipid biomarkers from both culture systems were proposed, including MGDG(34:2), MGDG(34:1) and PG(36:6). For both species, indoor conditions lead to lipid extracts rich in glycolipids and higher in oleic acid content. In contrast, outdoor conditions lead to higher proportions of phospholipids and betaine lipids and a higher relative content of eicosapentaenoic acid (EPA). The polar lipid profile of the two Nannochloropsis species differed primarily in the relative amounts of certain betaine lipids, mainly DGTS (which was increased in N. oceanica) and lysolipids (LPC, and LPE) (increased in N. limnetica), although the majority of lipids were observed in both species. The lipid extracts showed antioxidant activity (IC15) ranging from 30.4 +/- 1.8 to 45.7 +/- 1.6 mu mol Trolox g-1 of lipid extract. Overall, this study provides insight into the lipid metabolic adaptation of two Nannochloropsis species, providing the know-how to obtain a healthy polar lipid-rich biomass useful for novel applications in pharmaceutical, nutraceutical, or novel foods.
- Growth performance, biochemical composition and sedimentation velocity of Tetraselmis sp. CTP4 under different salinities using low-cost lab- and pilot-scale systemsPublication . Trovão, Mafalda; Pereira, Hugo; Silva, Joana; Páramo, Jaime; Quelhas, Pedro; Santos, Tamara; Silva, Joana T.; Machado, Adriana; Gouveia, Luísa; Barreira, Luísa; Varela, JoãoBiomass harvesting is one of the most expensive steps of the whole microalgal production pipeline. Therefore, the present work aimed to understand the effect of salinity on the growth performance, biochemical composition and sedimentation velocity of Tetraselmis sp. CTP4, in order to establish an effective low-cost pilot-scale harvesting system for this strain. At lab scale, similar growth performance was obtained in cultures grown at salinities of 5, 10 and 20 g L-1 NaCl. In addition, identical settling velocities (2.4-3.6 cm h-1) were observed on all salinities under study, regardless of the growth stage. However, higher salinities (20 g L-1) promoted a significant increase in lipid contents in this strain compared to when this microalga was cultivated at 5 or 10 g L-1 NaCl. At pilot-scale, cultures were cultivated semi-continuously in 2.5-m3 tubular photobioreactors, fed every four days, and stored in a 1-m3 harvesting tank. Upon a 24-hour settling step, natural sedimentation of the microalgal cells resulted in the removal of 93% of the culture medium in the form of a clear liquid containing only vestigial amounts of biomass (0.07 ± 0.02 g L-1 dry weight; DW). The remaining culture was recovered as a highly concentrated culture (19.53 ± 4.83 g L-1 DW) and wet microalgal paste (272.7 ± 18.5 g L-1 DW). Overall, this method provided an effective recovery of 97% of the total biomass, decreasing significantly the harvesting costs.
- Industrial production of Phaeodactylum tricornutum for CO2 mitigation: biomass productivity and photosynthetic efficiency using photobioreactors of different volumesPublication . Quelhas, Pedro M.; Trovao, Mafalda; Silva, Joana T.; Machado, Adriana; Santos, Tamara; Pereira, Hugo; Varela, João; Simoes, Manuel; Silva, Joana L.The photosynthetic efficiency (PE) and potential of Phaeodactylum tricornutum for CO2 mitigation in industrial tubular photobioreactors (PBRs) of different volumes were evaluated. A preliminary assay was performed at lab-scale to optimize the salt concentration of the culture medium. Interestingly, salinity did not affect the growth of P. tricornutum at concentrations of 2.5, 5, 10, and 20 g L-1. Higher volumetric productivities were achieved in the 2.5-m(3) tubular PBR (0.235 g L-1 day(-1)), followed by 35- and 10-m(3) PBRs. Maximum areal productivities corresponded to 48.5, 45.0, and 12.8 g m(-2) day(-1) for the 35-, 10-, and 2.5-m(3) PBRs, respectively. PE was thus higher in the 35- and 10-m(3) PBRs (2.21 and 2.08%, respectively). The 10- and 35-m(3) PBR showed CO2 mitigation efficiencies of 60 and 41%, respectively, of the CO2 introduced into the PBR, corresponding to 2.3 and 2.5 g of fixed CO2 per g of biomass. Overall, cultivation of P. tricornutum couples high PE and areal productivity when the industrial PBRs were used, particularly PBRs of larger volumes. This improved PE performance with larger PBR volumes strongly suggests that large-scale cultivation of this diatom holds great potential for industrial CO2 mitigation.
- Isolation, identification and biotechnological applications of a novel, robust, free-living Chlorococcum (Oophila) amblystomatis strain isolated from a local pondPublication . Correia, Nádia; Pereira, Hugo; Silva, Joana T.; Santos, Tamara; Soares, Maria; Sousa, Carolina B.; Schüler, Lisa Maylin; Costa, Margarida; J. C. or Varela J. or Varela J.C.S.; Pereira, Leonel; Silva, JoanaBioprospection of novel autochthonous strains is key to the successful industrial-scale production of microalgal biomass. A novel Chlorococcum strain was recently isolated from a pond inside the industrial production facility of Allmicroalgae (Leiria, Portugal). Phylogenetic analysis based on 18S ribosomal ribonucleic acid (rRNA) gene sequences suggests that this isolate is a novel, free-living Oophila amblystomatis strain. However, as our phylogenetic data strongly suggests that the aforementioned taxon belongs to the genus Chlorococcum, it is here proposed to rename this species as Chlorococcum amblystomatis. In order to characterize the biotechnological potential of this novel isolate, growth performance and biochemical composition were evaluated from the pilot (2.5-m3) to industrial (10-m3) scale. The highest maximum areal productivity (36.56 g m2 day1) was reached in a 10-m3 tubular photobioreactor (PBR), as compared to that obtained in a 2.5-m3 PBR (26.75 g m2 day1). Chlorococcum amblystomatis displayed high protein content (48%–56% dry weight (DW)) and moderate levels of total lipids (18%–31% DW), carbohydrates (6%–18% DW) and ashes (9%–16% DW). Furthermore, the lipid profile was dominated by polyunsaturated fatty acids (PUFAs). The highest pigment contents were obtained in the 2.5-m3 PBR, where total chlorophylls accounted for 40.24 mg g1 DW, followed by lutein with 5.37 mg g1 DW. Overall, this free-living Chlorococcum amblystomatis strain shows great potential for nutritional applications, coupling a promising growth performance with a high protein content as well as relevant amounts of PUFAs, chlorophyll, and carotenoids.
- Nannochloropsis oceanica cultivation in pilot-scale raceway ponds—from design to cultivationPublication . Cunha, Pedro; Pereira, Hugo; Costa, Margarida; Pereira, João; Silva, Joana T.; Fernandes, Nuno; Varela, João; Silva, Joana; Simões, ManuelRaceways ponds are the microalgal production systems most commonly used at industrial scale. In this work, two di erent raceway configurations were tested under the same processing conditions to compare their performance on the production of Nannochloropsis oceanica. Biomass productivity, biochemical composition of the produced biomass, and power requirements to operate those reactors were evaluated. Water depths of 0.20 and 0.13 m, and culture circulation velocities of 0.30 and 0.15 m s1 were tested. A standard configuration, which had a full channel width paddlewheel, proved to be the most energy e cient, consuming less than half of the energy required by a modified configuration (had a half channel width paddlewheel). The later showed to have slightly higher productivity, not enough to o set the large di erence in energetic consumption. Higher flow velocity (0.30 m s1) led to a 1.7 g m2 d1 improvement of biomass productivity of the system, but it increased the energy consumption twice as compared to the 0.15 m s1 flow velocity. The latter velocity showed to be the most productive in lipids. A water depth of 0.20 m was the most suitable option tested to cultivate microalgae, since it allowed a 54% energy saving. Therefore, a standard raceway pond using a flow velocity of 0.3 m s1 with a 0.20 m water depth was the most e cient system for microalgal cultivation. Conversely, a flow velocity of 0.15 m s1 was the most suitable to produce lipids.