Percorrer por autor "Sousa, Ana I."
A mostrar 1 - 6 de 6
Resultados por página
Opções de ordenação
- Assessing, quantifying and valuing the ecosystem services of coastal lagoonsPublication . Newton, Alice; Brito, Ana C.; Icely, John; Derolez, Valerie; Clara, Ines; Angus, Stewart; Schernewski, Gerald; Inacio, Miguel; Lillebo, Ana I.; Sousa, Ana I.; Bejaoui, Bechir; Solidoro, Cosimo; Tosic, Marko; Canedo-Arguelles, Miguel; Yamamuro, Masumi; Reizopoulou, Sofia; Tseng, Hsiao-Chun; Canu, Donata; Roselli, Leonilde; Maanan, Mohamed; Cristina, Sónia; Carolina Ruiz-Fernandez, Ana; de Lima, Ricardo F.; Kjerfve, Bjorn; Rubio-Cisneros, Nadia; Perez-Ruzafa, Angel; Marcos, Concepcion; Pastres, Roberto; Pranovi, Fabio; Snoussi, Maria; Turpie, Jane; Tuchkovenko, Yurii; Dyack, Brenda; Brookes, Justin; Povilanskas, Ramunas; Khokhlov, ValeriyThe natural conservation of coastal lagoons is important not only for their ecological importance, but also because of the valuable ecosystem services they provide for human welfare and wellbeing. Coastal lagoons are shallow semi-enclosed systems that support important habitats such as wetlands, mangroves, salt-marshes and seagrass meadows, as well as a rich biodiversity. Coastal lagoons are also complex social-ecological systems with ecosystem services that provide livelihoods, wellbeing and welfare to humans. This study assessed, quantified and valued the ecosystem services of 32 coastal lagoons. The main findings of the study are: (i) the definitions of ecosystem services are still not generally accepted; (ii) the quantification of ecosystem services is made in many different ways, using different units; (iii) the evaluation in monetary terms of some ecosystem service is problematic, often relying on non-monetary evaluation methods; (iv) when ecosystem services are valued in monetary terms, this may represent very different human benefits; and, (v) different aspects of climate change, including increasing temperature, sea-level rise and changes in rainfall patterns threaten the valuable ecosystem services of coastal lagoons.
- Assessment of marine ecosystem services indicators: experiences and lessons learned from 14 european case studiesPublication . Lillebo, Ana I.; Somma, Francesca; Noren, Katja; Gonçalves, Jorge Manuel Santos; Fatima Alves, M.; Ballarini, Elisabetta; Bentes, L.; Bielecka, Malgorzata; Chubarenko, Boris V.; Heise, Susanne; Khokhlov, Valeriy; Klaoudatos, Dimitris; Lloret, Javier; Margonski, Piotr; Marin, Atucha; Matczak, Magdalena; Oen, Amy M. P.; Palmieri, Maria G.; Przedrzymirska, Joanna; Rozynski, Grzegorz; Sousa, Ana I.; Sousa, Lisa P.; Tuchkovenko, Yurii; Zaucha, JacekThis article shares the experiences, observations, and discussions that occurred during the completing of an ecosystem services (ES) indicator framework to be used at European Union (EU) and Member States' level. The experience base was drawn from 3 European research projects and 14 associated case study sites that include 13 transitional-water bodies (specifically 8 coastal lagoons, 4 riverine estuaries, and 1 fjord) and 1 coastal-water ecosystem. The ES pertinent to each case study site were identified along with indicators of these ES and data sources that could be used for mapping. During the process, several questions and uncertainties arose, followed by discussion, leading to these main lessons learned: 1) ES identification: Some ES that do not seem important at the European scale emerge as relevant at regional or local scales; 2) ES indicators: When direct indicators are not available, proxies for indicators (indirect indicators) might be used, including combined data on monitoring requirements imposed by EU legislation and international agreements; 3) ES mapping: Boundaries and appropriate data spatial resolution must be established because ES can be mapped at different temporal and spatial scales. We also acknowledge that mapping and assessment of ES supports the dialogue between human well-being and ecological status. From an evidence-based marine planning-process point of view, mapping and assessment of marine ES are of paramount importance to sustainable use of marine natural capital and to halt the loss of marine biodiversity. (C) 2016 SETAC
- Climate effects on belowground tea litter decomposition depend on ecosystem and organic matter types in global wetlands.Publication . Trevathan-Tackett, Stacey M.; Kepfer-Rojas, Sebastian; Malerba, Martino; Macreadie, Peter I.; Djukic, Ika; Zhao, Junbin; Young, Erica B.; York, Paul H.; Yeh, Shin-Cheng; Xiong, Yanmei; Winters, Gidon; Whitlock, Danielle; Weaver, Carolyn A.; Watson, Anne; Visby, Inger; Tylkowski, Jacek; Trethowan, Allison; Tiegs, Scott; Taylor, Ben; Szpikowski, Jozef; Szpikowska, Grażyna; Strickland, Victoria L; Stivrins, Normunds; Sousa, Ana I.; Sinutok, Sutinee; Scheffel, Whitney A.; Sanderman, Jonathan; Sánchez-Carrillo, Salvador; Sanchez-Cabeza, Joan-Albert; Rymer, Krzysztof G.; Ruiz-Fernandez, Ana Carolina; Robroek, Bjorn J. M.; Roberts, Tessa; Ricart, Aurora M.; Reynolds, Laura K.; Rachlewicz, Grzegorz; Prathep, Anchana; Pinsonneault, Andrew J; Pendall, Elise; Payne, Richard; Ozola, Ilze; Onufrock, Cody; Ola, Anne; Oberbauer, Steven F; Numbere, Aroloye O.; Novak, Alyssa B.; Norkko, Joanna; Norkko, Alf; Mozdzer, Thomas J.; Morgan, Pam; Montemayor, Diana I.; Martin, Charles W.; Malone, Sparkle L.; Major, Maciej; Majewski, Mikołaj; Lundquist, Carolyn J.; Lovelock, Catherine E; Liu, Songlin; Lin, Hsing-Juh; Lillebo, Ana; Li, Jinquan; Kominoski, John S.; Khuroo, Anzar Ahmad; Kelleway, Jeffrey J.; Jinks, Kristin I.; Jerónimo, Daniel; Janousek, Christopher; Jackson, Emma L.; Iribarne, Oscar; Hanley, Torrance; Hamid, Maroof; Gupta, Arjun; Guariento, Rafael D.; Grudzinska, Ieva; da Rocha Gripp, Anderson; González Sagrario, María A.; Garrison, Laura M.; Gagnon, Karine; Gacia, Esperança; Fusi, Marco; Farrington, Lachlan; Farmer, Jenny; de Assis Esteves, Francisco; Escapa, Mauricio; Domańska, Monika; Dias, André T. C.; Daffonchio, Daniele; Czyryca, Paweł M.; Connolly, Rod M.; Cobb, Alexander; Chudzińska, Maria; Christiaen, Bart; Chifflard, Peter; Castelar, Sara; Carneiro, Luciana S.; Cardoso-Mohedano, José Gilberto; Camden, Megan; Caliman, Adriano; Bulmer, Richard H.; Bowen, Jennifer; Boström, Christoffer; Bernal, Susana; Berges, John A.; Benavides, Juan C.; Barry, Savanna C.; Alatalo, Juha M.; Al-Haj, Alia N.; Adame, Maria Fernanda; Barrena de los Santos, Carmen; Santos, RuiPatchy global data on belowground litter decomposition dynamics limit our capacity to discern the drivers of carbon preservation and storage across inland and coastal wetlands. We performed a global, multiyear study in over 180 wetlands across 28 countries and 8 macroclimates using standardized litter as measures of "recalcitrant" (rooibos tea) and "labile" (green tea) organic matter (OM) decomposition. Freshwater wetlands and tidal marshes had the highest tea mass remaining, indicating a greater potential for carbon preservation in these ecosystems. Recalcitrant OM decomposition increased with elevated temperatures throughout the decay period, e.g., increase from 10 to 20 °C corresponded to a 1.46-fold increase in the recalcitrant OM decay rate constant. The effect of elevated temperature on labile OM breakdown was ecosystem-dependent, with tidally influenced wetlands showing limited effects of temperature compared with freshwater wetlands. Based on climatic projections, by 2050 wetland decay constants will increase by 1.8% for labile and 3.1% for recalcitrant OM. Our study highlights the potential for reduction in belowground OM in coastal and inland wetlands under increased warming, but the extent and direction of this effect at a large scale is dependent on ecosystem and OM characteristics. Understanding local versus global drivers is necessary to resolve ecosystem influences on carbon preservation in wetlands.
- Climate effects on belowground tea litter decomposition depend on ecosystem and organic matter types in global wetlands.Publication . Trevathan-Tackett, Stacey M.; Kepfer-Rojas, Sebastian; Malerba, Martino; Macreadie, Peter I.; Djukic, Ika; Zhao, Junbin; Young, Erica B.; York, Paul H.; Yeh, Shin-Cheng; Xiong, Yanmei; Winters, Gidon; Whitlock, Danielle; Weaver, Carolyn A.; Watson, Anne; Visby, Inger; Tylkowski, Jacek; Trethowan, Allison; Tiegs, Scott; Taylor, Ben; Szpikowski, Jozef; Szpikowska, Grażyna; Strickland, Victoria L.; Stivrins, Normunds; Sousa, Ana I.; Sinutok, Sutinee; Scheffel, Whitney A.; Santos, Rui; Sanderman, Jonathan; Sánchez-Carrillo, Salvador; Sanchez-Cabeza, Joan-Albert; Rymer, Krzysztof G.; Ruiz-Fernandez, Ana Carolina; Robroek, Bjorn J. M.; Roberts, Tessa; Ricart, Aurora M.; Reynolds, Laura K.; Rachlewicz, Grzegorz; Prathep, Anchana; Pinsonneault, Andrew J.; Pendall, Elise; Payne, Richard; Ozola, Ilze; Onufrock, Cody; Ola, Anne; Oberbauer, Steven F.; Numbere, Aroloye O.; Novak, Alyssa B.; Norkko, Joanna; Norkko, Alf; Mozdzer, Thomas J.; Morgan, Pam; Montemayor, Diana I.; Martin, Charles W.; Malone, Sparkle L.; Major, Maciej; Majewski, Mikołaj; Lundquist, Carolyn J.; Lovelock, Catherine E.; Liu, Songlin; Lin, Hsing-Juh; Lillebo, Ana; Li, Jinquan; Kominoski, John S.; Khuroo, Anzar Ahmad; Kelleway, Jeffrey J.; Jinks, Kristin I.; Jerónimo, Daniel; Janousek, Christopher; Jackson, Emma L.; Iribarne, Oscar; Hanley, Torrance; Hamid, Maroof; Gupta, Arjun; Guariento, Rafael D.; Grudzinska, Ieva; da Rocha Gripp, Anderson; González Sagrario, María A.; Garrison, Laura M.; Gagnon, Karine; Gacia, Esperança; Fusi, Marco; Farrington, Lachlan; Farmer, Jenny; Esteves, Francisco de Assis; Escapa, Mauricio; Domańska, Monika; Dias, André T. C.; Barrena de los Santos, Carmen; Daffonchio, Daniele; Czyryca, Paweł M.; Connolly, Rod M.; Cobb, Alexander; Chudzińska, Maria; Christiaen, Bart; Chifflard, Peter; Castelar, Sara; Carneiro, Luciana S.; Cardoso-Mohedano, José Gilberto; Camden, Megan; Caliman, Adriano; Bulmer, Richard H.; Bowen, Jennifer; Boström, Christoffer; Bernal, Susana; Berges, John A.; Benavides, Juan C.; Barry, Savanna C.; Alatalo, Juha M.; Al-Haj, Alia N.; Adame, Maria FernandaPatchy global data on belowground litter decomposition dynamics limit our capacity to discern the drivers of carbon preservation and storage across inland and coastal wetlands. We performed a global, multiyear study in over 180 wetlands across 28 countries and 8 macroclimates using standardized litter as measures of "recalcitrant" (rooibos tea) and "labile" (green tea) organic matter (OM) decomposition. Freshwater wetlands and tidal marshes had the highest tea mass remaining, indicating a greater potential for carbon preservation in these ecosystems. Recalcitrant OM decomposition increased with elevated temperatures throughout the decay period, e.g., increase from 10 to 20 °C corresponded to a 1.46-fold increase in the recalcitrant OM decay rate constant. The effect of elevated temperature on labile OM breakdown was ecosystem-dependent, with tidally influenced wetlands showing limited effects of temperature compared with freshwater wetlands. Based on climatic projections, by 2050 wetland decay constants will increase by 1.8% for labile and 3.1% for recalcitrant OM. Our study highlights the potential for reduction in belowground OM in coastal and inland wetlands under increased warming, but the extent and direction of this effect at a large scale is dependent on ecosystem and OM characteristics. Understanding local versus global drivers is necessary to resolve ecosystem influences on carbon preservation in wetlands.
- Evaluating the success of vegetation restoration in rewilded salt marshesPublication . Carneiro, Inês; Carrasco, Rita; Didderen, Karin; Sousa, Ana I.Floodbank realignment is a common practice aimed at restoring salt marsh vegetation on previously embanked land. However, experiences indicate that it may take several years before salt marsh vegetation becomes fully established. Various challenges arising from ecogeomorphic feedback mechanisms could pose significant setbacks to vegetation recolonization. The widespread adoption of transplantation techniques for the restoration and rehabilitation of rewilded landscapes has indeed proven to be a valuable tool for accelerating plant development. In the Ria Formosa coastal lagoon (South of Portugal), a pilot plan was implemented, and two salt marsh pioneer species, Spartina maritima (syn. Sporobolus maritimus ) and Sarcocornia perennis (syn. Salicornia perennis ), were transplanted from a natural salt marsh to a rewilded marsh. Biodegradable 3D porous structures were installed to mimic transplant clumping, aid sedimentation, and enhance the plant ' s initial adjustment. Ecological, sediment, and hydrodynamic data were collected during the 12-month pilot restoration plan. The environmental profiles of the donor and restoration sites were compared to substantiate the success of the transplants in the rewilded salt marsh. Results show that although plant shoot density decreased after the transplanting, Spartina maritima acclimated well to the new environmental conditions of the restoration site, showing signs of growth and cover increase, whilst Sarcocornia perennis was not able to acclimatize and survive in the restoration site. The failure behind the Sarcocornia perennis acclimation might be related to the bed properties and topographic properties of the restoration site in the rewilded marsh. Major findings contribute to a more comprehensive understanding of how salt marsh pioneering vegetation successfully colonizes disturbed habitats, facilitated using 3D -biodegradable structures.
- A trait-based framework for seagrass ecology: trends and prospectsPublication . Moreira-Saporiti, Agustín; Teichberg, Mirta; Garnier, Eric; Cornelissen, J. Hans C.; Alcoverro, Teresa; Björk, Mats; Boström, Christoffer; Dattolo, Emanuela; Eklöf, Johan S.; Hasler-Sheetal, Harald; Marbà, Nuria; Marín-Guirao, Lázaro; Meysick, Lukas; Olivé, Irene; Reusch, Thorsten B. H.; Ruocco, Miriam; Silva, João; Sousa, Ana I.; Procaccini, Gabriele; Santos, RuiIn the last three decades, quantitative approaches that rely on organism traits instead of taxonomy have advanced different fields of ecological research through establishing the mechanistic links between environmental drivers, functional traits, and ecosystem functions. A research subfield where trait-based approaches have been frequently used but poorly synthesized is the ecology of seagrasses; marine angiosperms that colonized the ocean 100M YA and today make up productive yet threatened coastal ecosystems globally. Here, we compiled a comprehensive trait-based response-effect framework (TBF) which builds on previous concepts and ideas, including the use of traits for the study of community assembly processes, from dispersal and response to abiotic and biotic factors, to ecosystem function and service provision. We then apply this framework to the global seagrass literature, using a systematic review to identify the strengths, gaps, and opportunities of the field. Seagrass trait research has mostly focused on the effect of environmental drivers on traits, i.e., "environmental filtering" (72%), whereas links between traits and functions are less common (26.9%). Despite the richness of trait-based data available, concepts related to TBFs are rare in the seagrass literature (15% of studies), including the relative importance of neutral and niche assembly processes, or the influence of trait dominance or complementarity in ecosystem function provision. These knowledge gaps indicate ample potential for further research, highlighting the need to understand the links between the unique traits of seagrasses and the ecosystem services they provide.
