Browsing by Author "Starita-Geribaldi, Mireille"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Effect of cadmium in the clam Ruditapes decussatus assessed by proteomic analysisPublication . Chora, Suze; Starita-Geribaldi, Mireille; Guigonis, Jean-Marie; Samson, Michel; Roméo, Michèle; Bebianno, Maria JoãoCadmium, an environmental stressor due to its toxicity, persistence and accumulation in biota, is widespread in the aquatic environment. Cadmium accumulation kinetics have revealed that Ruditapes decussatus has a high affinity to this metal. Proteomics is an effective tool to evaluate the toxic effects of contaminants. The aim of this study was to investigate the Cd effects in the gill and digestive gland of the sentinel species R. decussatus. Protein expression profiles (PEPs) in the clam tissues exposed to Cd (40 microg l(-1), 21 days) were compared to unexposed ones. Cd induces major changes in tissue-specific protein expression profiles in gill and digestive gland. This tissue dependent response results mainly from differences in Cd accumulation, protein inhibition and/or autophagy. An overall decrease of protein spots was detected in both treated tissues, being higher in gill. Some of the spots more drastically altered after pollutants exposure were excised and nine were identified by micro liquid chromatography tandem mass spectrometry (LC-MS/MS). Proteins identified by homology search in databases included: three proteins (8-fold) up-regulated, one down-regulated, four suppressed and one induced. Cd induces major changes in proteins involved in cytoskeletal structure maintenance (muscle-type actin, adductor muscle actin and beta-tubulin), cell maintenance (Rab GDP) and metabolism (ALDH and MCAD, both identified by de novo sequencing) suggesting potential energetic change. They provide a valuable knowledge of Cd effects at biochemical and molecular levels in the gill and digestive gland of R. decussatus.
- Ubiquitination and carbonylation as markers of oxidative-stress in Ruditapes decussatusPublication . Chora, Suze; McDonagh, Brian; Sheehan, David; Starita-Geribaldi, Mireille; Roméo, Michèle; Bebianno, Maria JoãoEnvironmental pollutants, such as metals, are widespread in aquatic environments and can lead to the formation of reactive oxygen species (ROS). ROS are highly toxic in marine species since they can cause serious reversible and irreversible changes in proteins including ubiquitination and modifications such as carbonylation. This study aimed to confirm the potential of ubiquitination and carbonylation as markers of oxidative stress in the clam Ruditapes decussatus (Veneroida, Veneridae) exposed to cadmium (40 microg/L). After 21 days of exposure clams were dissected into gills and digestive gland. Cytosolic proteins of both tissues were separated by two-dimensional electrophoresis (2-D SDS-PAGE) and analysed by immunobloting. Higher ubiquitination and carbonylation levels were in digestive gland of contaminated organisms. These results confirm the potential of ubiquitination and carbonylation as a sensitive and specific marker of oxidative stress in marine bivalves. In this approach, changes in protein structure provide options for affinity selection of sub-proteomes for 2D SDS-PAGE, simplifying the detection of protein biomarkers using proteomic approach.
- Ubiquitination and carbonylation of proteins in the clam Ruditapes decussatus, exposed to nonylphenol using redox proteomicsPublication . Chora, Suze; McDonagh, Brian; Sheehan, David; Starita-Geribaldi, Mireille; Roméo, Michèle; Bebianno, Maria JoãoUbiquitination and carbonylation of proteins were investigated in the gill and digestive gland of Ruditapes decussatus exposed to NP (nonylphenol) (100 μgL(-1)) using redox proteomics. After 21 d of exposure, clams were dissected and cytosolic proteins of both tissues separated by 2DE SDS-PAGE. Protein expression profiles were tissue-dependent and differently affected by NP exposure. Ubiquitination and carbonylation were also tissue-specific. NP exposure induced significantly more ubiquitinated proteins in gills than in digestive glands, compared to controls. Digestive gland showed a significant higher number of carbonylated proteins than gills after NP exposure. Protein ubiquitination and carbonylation are therefore independent processes. Results showed that NP exposure generated ROS in gill and digestive gland of R. decussatus that significantly altered the proteome. Results also highlighted the advantage of using redox proteomics in the assessment of protein ubiquitination and carbonylation, which may be markers of oxidative stress in R. decussatus.