Browsing by Author "Steinbeisser, Herbert"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Developmental expression of Shisa-2 in Xenopus laevisPublication . Silva, Ana-Cristina; Filipe, Mario; Vitorino, Marta; Steinbeisser, Herbert; Belo, José A.Shisa is an antagonist of Wnt and FGF signaling, that functions cell autonomously in the endoplasmic reticulum (ER) to inhibit the post-translational maturation of Wnt and FGF receptors. In this paper we report the isolation of a second Xenopus shisa gene (Xshisa-2). Xenopus Shisa-2shows 30.7% identity to Xshisa. RT-PCR analysis indicated that Xshisa-2 mRNA is present throughout early development and shows an increased expression during neurula and tailbud stages. At neurula stages Xenopus shisa-2 is initially expressed in the presomitic paraxial mesoderm and later in the developing somites. The expression profiles and pattern of Xshisa and Xshisa-2 differ significantly. During gastrulation only Xshisa mRNA is present in the Spemann-Mangold organizer and later on becomes restricted to the neuroectoderm and the prechordal plate.
- Endogenous Cerberus activity is required for anterior head specification in XenopusPublication . Silva, Ana Cristina; Filipe, Mário; Kuerner, Klaus-Michael; Steinbeisser, Herbert; Belo, José A.We analyzed the endogenous requirement for Cerberus in Xenopus head development. 'Knockdown' of Cerberus function by antisense morpholino oligonucleotides did not impair head formation in the embryo. In contrast, targeted increase of BMP, Nodal and Wnt signaling in the anterior dorsal-endoderm (ADE) resulted in synergistic loss of anterior head structures, without affecting more posterior axial ones. Remarkably, those head phenotypes were aggravated by simultaneous depletion of Cerberus. These experiments demonstrated for the first time that endogenous Cerberus protein can inhibit BMP, Nodal and Wnt factors in vivo. Conjugates of dorsal ectoderm (DE) and ADE explants in which Cerberus function was 'knocked down' revealed the requirement of Cerberus in the ADE for the proper induction of anterior neural markers and repression of more posterior ones. This data supports the view that Cerberus function is required in the leading edge of the ADE for correct induction and patterning of the neuroectoderm.
- Study of Xenopus orthologs of novel genes expressed in the mouse AVEPublication . Becker, Jorg D.; Steinbeisser, Herbert; Belo, A.; Silva, Ana C.; Vitorino, Marta; Filipa, Mário; Marques, Sara
- Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling PathwayPublication . Vitorino, Marta; Silva, Ana Cristina; Inacio, Jose Manuel; Ramalho, Jose Silva; Gur, Michal; Fainsod, Abraham; Steinbeisser, Herbert; Belo, José A.Protein Kinase Domain Containing, Cytoplasmic (PKDCC) is a protein kinase which has been implicated in longitudinal bone growth through regulation of chondrocytes formation. Nevertheless, the mechanism by which this occurs remains unknown. Here, we identified two new members of the PKDCC family, Pkdcc1 and Pkdcc2 from Xenopus laevis. Interestingly, our knockdown experiments revealed that these two proteins are both involved on blastopore and neural tube closure during gastrula and neurula stages, respectively. In vertebrates, tissue polarity and cell movement observed during gastrulation and neural tube closure are controlled by Wnt/Planar Cell Polarity (PCP) molecular pathway. Our results showed that Pkdcc1 and Pkdcc2 promote the recruitment of Dvl to the plasma membrane. But surprisingly, they revealed different roles in the induction of a luciferase reporter under the control of Atf2 promoter. While Pkdcc1 induces Atf2 expression, Pkdcc2 does not, and furthermore inhibits its normal induction by Wnt11 and Wnt5a. Altogether our data show, for the first time, that members of the PKDCC family are involved in the regulation of JNK dependent Wnt/PCP signaling pathway.