Browsing by Author "Sun, Jin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Comparative proteomics on deep-sea amphipods after in situ copper exposurePublication . Kwan, Yick Hang; Zhang, Dongsheng; Mestre, Nélia; Wong, Wai Chuen; Wang, Xiaogu; Lu, Bo; Wang, Chunsheng; Qian, Pei-Yuan; Sun, JinThe interest in deep-sea mining increased along with the environmental concerns of these activities to the deep-sea fauna. The discovery of optimal biomarkers of deep-sea mining activities in deep-sea species is a crucial step toward the supply of important ecological information for environmental impact assessment. In this study, an in situ copper exposure experiment was performed on deep-sea scavenging amphipods. Abyssorchomene distinctus individuals were selected among all the exposed amphipods for molecular characterization. Copper concentration within the gut was assessed, followed by a tandem mass tag-based coupled with two-dimensional liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) applied to identify and quantify the protein expression changes after 48 h of exposure. 2937 proteins were identified and annotated, and 1918 proteins among all identified proteins were assigned by at least two nonambiguous peptides. The screening process was performed based on the differences in protein abundance and the specific correlation between the proteins and copper in previous studies. These differentially produced proteins include Na+/K+ ATPase, cuticle, chitinase, and proteins with unknown function. Their abundances showed correlation with copper and had high sensitivity to indicate the copper level, being here proposed as biomarker candidates for deep-sea mining activities in the future. This is a key step in the development of environmental impact assessment of deep-sea mining activities integrating ecotoxicological data.
- Potential biomarkers of metal toxicity in deep-sea invertebrates – a critical review of the omics dataPublication . Vieira de Sousa, Cármen Sofia; Sun, Jin; Mestre, NéliaDeep-sea mining (DSM) activities are expected to release potentially toxic metal mixtures through the generation of sediment plumes to the marine environment. This may disrupt the normal functioning of biological mechanisms, adversely affecting deep-sea invertebrate organisms. It is thus essential to understand the ecotoxicological effects from these toxic elements in deep-sea organisms and the omics approaches applied to ecotoxicology are seen as promising tools. Here, we provide an overview of the principal biological modifications identified in deep-sea invertebrates when exposed to metals and critically evaluate the current knowledge and discuss which potential biomarkers may be useful after metal exposure. Most of the 50 omics studies on deep-sea invertebrates revised are comparative transcriptomes (n = 41). Forty-three potential biomarker candidates are highlighted from immune system, 46 from cellular metabolism and 29 from oxidative stress. The processes mostly affected by metal toxicity in deep-sea invertebrates are related to innate immune defense; sulfur, chitin, and catabolic metabolism; antioxidation; and detoxification. We acknowledge the current limitations and future perspectives for their uses and emphasize the need to invest in further ecotoxicological studies using the omics approaches.