Browsing by Author "Tuya, Fernando"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
- A meta-analysis of seaweed impacts on seagrasses: generalities and knowledge gapsPublication . Thomsen, Mads S.; Wernberg, Thomas; Engelen, Aschwin; Tuya, Fernando; Vanderklift, Mat A.; Holmer, Marianne; McGlathery, Karen J.; Arenas, Francisco; Kotta, Jonne; Sillimann, Brian R.Seagrasses are important habitat-formers and ecosystem engineers that are under threat from bloom-forming seaweeds. These seaweeds have been suggested to outcompete the seagrasses, particularly when facilitated by eutrophication, causing regime shifts where green meadows and clear waters are replaced with unstable sediments, turbid waters, hypoxia, and poor habitat conditions for fishes and invertebrates. Understanding the situations under which seaweeds impact seagrasses on local patch scales can help proactive management and prevent losses at greater scales. Here, we provide a quantitative review of available published manipulative experiments (all conducted at the patch-scale), to test which attributes of seaweeds and seagrasses (e.g., their abundances, sizes, morphology, taxonomy, attachment type, or origin) influence impacts. Weighted and unweighted meta-analyses (Hedges d metric) of 59 experiments showed generally high variability in attribute-impact relationships. Our main significant findings were that (a) abundant seaweeds had stronger negative impacts on seagrasses than sparse seaweeds, (b) unattached and epiphytic seaweeds had stronger impacts than 'rooted' seaweeds, and (c) small seagrass species were more susceptible than larger species. Findings (a) and (c) were rather intuitive. It was more surprising that 'rooted' seaweeds had comparatively small impacts, particularly given that this category included the infamous invasive Caulerpa species. This result may reflect that seaweed biomass and/or shading and metabolic by-products like anoxia and sulphides could be lower for rooted seaweeds. In conclusion, our results represent simple and robust first-order generalities about seaweed impacts on seagrasses. This review also documented a limited number of primary studies. We therefore identified major knowledge gaps that need to be addressed before general predictive models on seaweed-seagrass interactions can be build, in order to effectively protect seagrass habitats from detrimental competition from seaweeds.
- DNA barcoding reveals cryptic diversity, taxonomic conflicts and novel biogeographical insights in Cystoseira s.l. (Phaeophyceae)Publication . Neiva, J.; Bermejo, Ricardo; Medrano, Alba; Capdevila, Pol; Milla-Figueras, David; Afonso, Pedro; Ballesteros, Enric; Sabour, Brahim; Serio, Donatella; Nóbrega, Eduardo; Soares, João; Valdazo, José; Tuya, Fernando; Mulas, Martina; Israel, Álvaro; Sadogurska, Sofia S.; Guiry, Michael D.; Pearson, Gareth; Serrao, EsterCystoseira sensu lato (s.l.) - encompassing the genera Cystoseira sensu stricto (s.s.), Ericaria and Gongolaria - is a diverse group of forest-forming brown macroalgae endemic to the warm-temperate North-east Atlantic. These algae have immense biogeographic and ecological significance and have been experiencing recent regional declines. Most Cystoseira s.l. display important morphological plasticity and can be confused with similar species. Therefore, species boundaries, geographic ranges and phylogenetic affinities remain imprecise for most. In the face of persistent taxonomic difficulties, several authors underlined the necessity for new molecular-based approaches, but studies so far lacked representativity, resolution and standardization. To fill in these gaps, in this study we sequenced a comprehensive collection of Cystoseira s.l. spanning its entire North-east Atlantic range for a similar to 1200 bp cox1 barcode, and sequenced selected individuals representing major genetic entities for a few additional plastid markers. Phylogeographic, phylogenetic and species delimitation methods revealed 27 Molecular Operational Taxonomic Units, including unaccounted cryptic diversity, and elucidated with unprecedented resolution species compositions and phylogenetic relationships within each genus. Some entities within the lineages Cystoseira compressa/humilis, Ericaria brachycarpa/crinita, E selaginoides and tophulose Gongolaria, as well as among free-living algae, conflicted with a priori taxonomic assignments, and required the redefinition, reinstatement and recognition of new taxa. For some, diagnostic mutations and biogeography were more useful for species identifications than morphological characters or conventional barcoding gaps. A few species showed narrow geographic ranges and others were the sole representatives of their respective lineages. Several sister-species showed Atlantic vs Mediterranean complementary ranges. phylogenetic signal of coxl was nevertheless insufficient to confidently determine patterns of lineage splitting in several lineages and species complexes and did not improve significantly with additional plastid markers. We discuss novel systematics and biogeography insights considering the advantages and shortcomings of the barcoding approach employed, and how this comprehensive baseline study can be expanded to address multiple questions still left unanswered.
- Drivers of variation in seagrass-associated amphipods across biogeographical areasPublication . Navarro-Mayoral, Sandra; Tuya, Fernando; Prado, Patricia; Marco-Méndez, Candela; Fernandez-Gonzalez, Victoria; Fernández-Torquemada, Yolanda; Espino, Fernando; Antonio de la Ossa, Jose; Vilella, David Mateu; Machado, Margarida; Martínez-Crego, BegoñaAmphipods are one of the dominant epifaunal groups in seagrass meadows. However, our understanding of the biogeographical patterns in the distribution of these small crustaceans is limited. In this study, we investigated such patterns and the potential drivers in twelve Cymodocea nodosa meadows within four distinctive biogeo-graphical areas across 2000 Km and 13 degrees of latitude in two ocean basins (Mediterranean Sea and Atlantic Ocean). We found that species abundances in the assemblage of seagrass-associated amphipods differed among areas following a pattern largely explained by seagrass leaf area and epiphyte biomass, while the variation pattern in species presence/absence was determined by seagrass density and epiphyte biomass. Seagrass leaf area was also the most important determinant of greater amphipod total density and species richness, while amphipod density also increased with algal cover. Overall, our results evidenced that biogeographical patterns of variation in amphipod assemblages are mainly influenced by components of the habitat structure, which covary with envi-ronmental conditions, finding that structurally more complex meadows harboring higher abundance and rich-ness of amphipods associated.
- Effect of Depth across a Latitudinal Gradient in the Structure of Rhodolith Seabeds and Associated Biota across the Eastern Atlantic OceanPublication . Pérez-Peris, Inés; Navarro-Mayoral, Sandra; de Esteban, Marcial Cosme; Tuya, Fernando; Peña, Viviana; Barbara, Ignacio; Neves, Pedro; Ribeiro, Cláudia; Abreu, Antonio; Grall, Jacques; Espino, Fernando; Bosch, Nestor Echedey; Haroun, Ricardo; Otero-Ferrer, FranciscoRhodolith seabeds are 'ecosystem engineers' composed of free-living calcareous red macroalgae, which create extensive marine habitats. This study addressed how depth influenced the structure (size and morphology) of rhodoliths and the abundance of associated floral and faunal epibionts across the Eastern Atlantic Ocean. Sampling was carried out at two sites within five regions (Brittany, Galicia, Madeira, Gran Canaria, and Principe Island), from temperate to tropical, covering a latitudinal gradient of 47 degrees, in three depth strata (shallow, intermediate and deep), according to the rhodolith bathymetrical range in each region. Depth typically affected the rhodolith size at all regions; the largest nodules were found in the intermediate and deep strata, while rhodolith sphericity was larger at the shallow depth strata. Higher biomasses of attached macroalgae (epiphytes) were observed at depths where rhodoliths were larger. The abundance of epifauna was variable across regions and depth strata. In general, the occurrence, structure, and abundance of the associated biota across rhodolith habitats were affected by depth, with local variability (i.e., sites within regions) often displaying a more significant influence than the regional (large-scale) variation. Overall, this study showed that the rhodolith morphology and associated epibionts (flora and fauna) were mostly affected by depth, irrespective of latitude.
- "How" and "what" matters: Sampling method affects biodiversity estimates of reef fishesPublication . Bosch, Nestor E.; Gonçalves, Jorge Manuel Santos; Erzini, Karim; Tuya, FernandoUnderstanding changes in biodiversity requires the implementation of monitoring programs encompassing different dimensions of biodiversity through varying sampling techniques. In this work, fish assemblages associated with the "outer" and "inner" sides of four marinas, two at the Canary Islands and two at southern Portugal, were investigated using three complementary sampling techniques: underwater visual censuses (UVCs), baited cameras (BCs), and fish traps (FTs). We firstly investigated the complementarity of these sampling methods to describe species composition. Then, we investigated differences in taxonomic (TD), phylogenetic (PD) and functional diversity (FD) between sides of the marinas according to each sampling method. Finally, we explored the applicability/reproducibility of each sampling technique to characterize fish assemblages according to these metrics of diversity. UVCs and BCs provided complementary information, in terms of the number and abundances of species, while FTs sampled a particular assemblage. Patterns of TD, PD, and FD between sides of the marinas varied depending on the sampling method. UVC was the most cost-efficient technique, in terms of personnel hours, and it is recommended for local studies. However, for large-scale studies, BCs are recommended, as it covers greater spatio-temporal scales by a lower cost. Our study highlights the need to implement complementary sampling techniques to monitor ecological change, at various dimensions of biodiversity. The results presented here will be useful for optimizing future monitoring programs.
- Levelling-up rhodolith-bed science to address global-scale conservation challengesPublication . Tuya, Fernando; Schubert, Nadine; Aguirre, Julio; Basso, Daniela; Bastos, Eduardo O.; Berchez, Flávio; Bernardino, Angelo F.; Bosch, Néstor E.; Burdett, Heidi L.; Espino, Fernando; Fernández-Gárcia, Cindy; Francini-Filho, Ronaldo B.; Gagnon, Patrick; Hall-Spencer, Jason M.; Haroun, Ricardo; Hofmann, Laurie C.; Horta, Paulo A.; Kamenos, Nicholas A.; Le Gall, Line; Magris, Rafael A.; Martin, Sophie; Nelson, Wendy A.; Neves, Pedro; Olivé, Irene; Otero-Ferrer, Francisco; Peña, Viviana; Pereira-Filho, Guilherme H.; Ragazzola, Federica; Rebelo, Ana Cristina; Ribeiro, Cláudia; Rinde, Eli; Schoenrock, Kathryn; Silva, João; Sissini, Marina N.; Tâmega, Frederico T. S.Global marine conservation remains fractured by an imbalance in research efforts and policy actions, limiting progression towards sustainability. Rhodolith beds represent a prime example, as they have ecological importance on a global scale, provide a wealth of ecosystem functions and services, including biodiversity provision and potential climate change mit-igation, but remain disproportionately understudied, compared to other coastal ecosystems (tropical coral reefs, kelp for-ests, mangroves, seagrasses). Although rhodolith beds have gained some recognition, as important and sensitive habitats at national/regional levels during the last decade, there is still a notable lack of information and, consequently, specific conservation efforts. We argue that the lack of information about these habitats, and the significant ecosystem services they provide, is hindering the development of effective conservation measures and limiting wider marine conservation success. This is becoming a pressing issue, considering the multiple severe pressures and threats these habitats are exposed to (e.g., pollution, fishing activities, climate change), which may lead to an erosion of their ecological function and eco-system services. By synthesizing the current knowledge, we provide arguments to highlight the importance and urgency of levelling-up research efforts focused on rhodolith beds, combating rhodolith bed degradation and avoiding the loss of associated biodiversity, thus ensuring the sustainability of future conservation programs.
- Marinas as habitats for nearshore fish assemblages: comparative analysis of underwater visual census, baited cameras and fish trapsPublication . Bosch, Nestor E.; Goncalves, Jorge M. S.; Tuya, Fernando; Erzini, KarimUnderstanding the ecological role that artificial structures might play on nearshore fish assemblages requires the collection of accurate and reliable data through efficient sampling techniques. In this work, differences in the composition and structure of fish assemblages between the inner and outer sides of three marinas located in the temperate northern-eastern Atlantic Ocean were tested using three complementary sampling techniques: underwater visual censuses (UVC), baited cameras (BCs) and fish traps (FTs). UVCs and BCs recorded a comparable number and relative abundance of species, which in turn were much greater than those recorded by FTs. This finding supports the use of UVCs and BCs over FTs for broad ecologically studies, especially when dealing with structurally complex habitats such as artificial structures. We found differences in fish assemblage structure between the inner and outer sides of marinas, independently of the sampling method. Four small-sized species (Similiparma lurida, Thalassoma pavo, Sarpa salpa and Symphodus roissali) associated with structurally complex vegetated habitats dominated, in terms of abundance, the outer sides of marinas; Diplodus vulgaris, Diplodus sargus and Gobius niger, species with high ecological plasticity in habitat requirements, dominated the inner sides of marinas. The information provided in this study is of great interest for developing sound monitoring programmes to ascertain the effects of artificial structures on fish communities.
- Positive species interactions structure rhodolith bed communities at a global scalePublication . Bulleri, Fabio; Schubert, Nadine; Hall‐Spencer, Jason M.; Basso, Daniela; Burdett, Heidi L.; Francini‐Filho, Ronaldo B.; Grall, Jacques; Horta, Paulo A.; Kamenos, Nicholas A.; Martin, Sophie; Nannini, Matteo; Neves, Pedro António Nobre Soares Pinto das; Olivé, Irene; Peña, Viviana; Ragazzola, Federica; Ribeiro, Cláudia; Rinde, Eli; Sissini, Marina; Tuya, Fernando; Silva, JoãoRhodolith beds are diverse and globally distributed habitats. Nonetheless, the role of rhodoliths in structuring the associated species community through a hierarchy of positive interactions is yet to be recognised. In this review, we provide evidence that rhodoliths can function as foundation species of multi-level facilitation cascades and, hence, are fundamental for the persistence of hierarchically structured communities within coastal oceans. Rhodoliths generate facilitation cascades by buffering physical stress, reducing consumer pressure and enhancing resource availability. Due to large variations in their shape, size and density, a single rhodolith bed can support multiple taxonomically distant and architecturally distinct habitat-forming species, such as primary producers, sponges or bivalves, thus encompassing a broad range of functional traits and providing a wealth of secondary microhabitat and food resources. In addition, rhodoliths are often mobile, and thus can redistribute associated species, potentially expanding the distribution of species with short-distance dispersal abilities. Key knowledge gaps we have identified include: the experimental assessment of the role of rhodoliths as basal facilitators; the length and temporal stability of facilitation cascades; variations in species interactions within cascades across environmental gradients; and the role of rhodolith beds as climate refugia. Addressing these research priorities will allow the development of evidence-based policy decisions and elevate rhodolith beds within marine conservation strategies.
- Rhodolith beds in the eastern tropical pacific: habitat structure and associated biodiversityPublication . Diaz-Licona, Celeste A.; Schubert, Nadine; González-Gamboa, Vladimir; Tuya, Fernando; Azofeifa-Solano, Juan Carlos; Fernández-García, CindyRhodolith beds (RBs) are globally distributed marine benthic habitats and recognized biodiversity hotspots of conservation interest. However, considerable regions of the world's oceans remain unknown in terms of the presence, distribution, structure, and associated biodiversity of such habitats. In the Eastern Tropical Pacific (ETP), even basic information about these habitats is still extremely scarce. To fill this gap, we characterized the habitat structure and associated biodiversity of four shallow-water RBs at Cocos Island, Costa Rica. Specifically, information regarding rhodolith structural attributes (size, morphology, and CaCO3 content), as well as habitat characteristics (rhodolith nodule density, biomass and CaCO3 standing stocks) were collected. Moreover, the diversity and abundance of associated organisms, including macroalgae, invertebrates and fishes, were determined. Our study shows that Cocos Island harbors dense RBs (1100 to >4500 nodules m(-2)) with substantial carbonate stocks (14-22 kg m(-2)), which provide habitats for a wide array of species (158 recorded species). This study adds 58 new records of RB-associated species to previously published records for the island, which increases the total number of species to 316, including 51 species endemic to the ETP and four species categorized as vulnerable by the IUCN. Our results also indicate that community composition and abundance of organisms vary among RBs, likely due to differences in rhodolith morphologies and sizes and/or local environmental conditions. Further research efforts are warranted to identify the drivers for these differences, as well as expanding studies towards other RBs at Cocos Island and in the ETP in general.
- Rhodolith physiology across the atlantic: towards a better mechanistic understanding of Intra- and interspecific differencesPublication . Schubert, Nadine; Peña, Viviana; Salazar, Vinícius W.; Horta, Paulo A.; Neves, Pedro; Ribeiro, Cláudia; Otero-Ferrer, Francisco; Tuya, Fernando; Espino, Fernando; Schoenrock, Kathryn; Hofmann, Laurie C.; Le Gall, Line; Santos, Rui; Silva, JoãoCoralline algae are important components in a large variety of ecosystems. Among them, rhodoliths are a group of free-living coralline red algae that cover extensive coastal areas, from tropical to polar regions. In contrast to other ecosystem engineers, limited research efforts preclude our understanding of their physiology, underlying mechanisms, drivers and potential differences related to species under varying environments. In this study, we investigated the photosynthetic and calcification mechanisms of six Atlantic rhodolith species from different latitudes, as well as intra-specific differences in one species from four locations. Laboratory incubations under varying light levels provided simultaneous photosynthesis- and calcification-irradiance curves, allowing the assessment of inter- and intra-specific differences on the coupling between these two processes. Stable isotope analysis and specific inhibitor experiments were performed to characterize and compare carbon-concentrating mechanisms (CCMs), as well as the involvement of specific ion-transporters for calcification. Our findings showed significant differences in rhodolith physiological mechanisms that were partially driven by local environmental conditions (light, temperature). High variability was found in the coupling between photosynthesis and calcification, in CCM-strategies, and in the importance of specific ion transporters and enzymes involved in calcification. While calcification was strongly correlated with photosynthesis in all species, the strength of this link was species-specific. Calcification was also found to be reliant on hotosynthesis- and light-independent processes. The latter showed a high plasticity in their expression among species, also influenced by the local environment. Overall, our findings demonstrate that (1) rhodolith calcification is a biologically-controlled process and (2) the mechanisms associated with photosynthesis and calcification display a large variability among species, suggesting potential differences not only in their individual, but also community responses to environmental changes, such as climate change.
