Browsing by Author "Valente, Luísa M. P."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Dietary creatine supplementation in gilthead seabream (Sparus aurata) increases dorsal muscle area and the expression of myod1 and capn1 genesPublication . Ramos-Pinto, Lourenço; Lopes, Graciliana; Sousa, Vera; Castro, L. Filipe C.; Schrama, Denise; Rodrigues, Pedro; Valente, Luísa M. P.Creatine (Cr) is an amino acid derivative with an important role in the cell as energy buffer that has been largely used as dietary supplement to increase muscle strength and lean body mass in healthy individuals and athletes. However, studies in fish are scarce. The aim of this work is to determine whether dietary Cr supplementation affects muscle growth in gilthead seabream (Sparus aurata) juveniles. Fish were fed ad libitum for 69 days with diets containing three increasing levels of creatine monohydrate (2, 5, and 8%) that were compared with a non-supplemented control (CTRL) diet. At the end of the trial, the fast-twist skeletal muscle growth dynamics (muscle cellularity) and the expression of muscle-related genes were evaluated. There was a general trend for Cr-fed fish to be larger and longer than those fed the CTRL, but no significant differences in daily growth index (DGI) were registered among dietary treatments. The dorsal cross-sectional muscle area (DMA) of fish fed Cr 5 and Cr 8% was significantly larger than that of fish fed CTRL. The groups supplemented with Cr systematically had a higher relative number of both small-sized (<= 20m mu) and large-sized fibers (>= 20)mu m). Dorsal total fibers number was highest in fish fed 5% Cr. In fish supplemented with 5% Cr, the relative expression of myogenic differentiation 1 (myod1) increased almost four times compared to those fed the CTRL diet. The relative expression of calpain 3 (capn3) was highest in fish fed diets with 2% Cr supplementation, but did not differ significantly from those fed the CTRL or Cr 5%. The myod1 gene expression had a positive and significant correlation with that of capn1, capnsla, and capn3 expression. These results suggest that the observed modulation of gene expression was not enough to produce a significant alteration in muscle phenotype under the tested conditions, as a non-significant increase in muscle fiber diameter and higher total number of fiber was observed, but still resulted in increased DMA. Additional studies may be required in order to better clarify the effect of dietary Cr supplementation in fish, possibly in conjunction with induced resistance training.
- Dietary indispensable amino acids profile affects protein utilization and growth of Senegalese sole larvaePublication . Canada, Paula; Engrola, S.; Richard, Nadège; Lopes, Ana Filipa; Pinto, Wilson; Valente, Luísa M. P.; Da Conceição, Gisele CristinaIn diet formulation for fish, it is critical to assure that all the indispensable amino acids (IAA) are available in the right quantities and ratios. This will allow minimizing dietary AA imbalances that will result in unavoidable AA losses for energy dissipation rather than for protein synthesis and growth. The supplementation with crystalline amino acids (CAA) is a possible solution to correct the dietary amino acid (AA) profile that has shown positive results for larvae of some fish species. This study tested the effect of supplementing a practical microdiet with encapsulated CAA as to balance the dietary IAA profile and to improve the capacity of Senegalese sole larvae to utilize AA and maximize growth potential. Larvae were reared at 19 A degrees C under a co-feeding regime from mouth opening. Two microdiets were formulated and processed as to have as much as possible the same ingredients and proximate composition. The control diet (CTRL) formulation was based on commonly used protein sources. A balanced diet (BAL) was formulated as to meet the ideal IAA profile defined for Senegalese sole: the dietary AA profile was corrected by replacing 4 % of encapsulated protein hydrolysate by CAA. The in vivo method of controlled tube-feeding was used to assess the effect on the larvae capacity to utilize protein, during key developmental stages. Growth was monitored until 51 DAH. The supplementation of microdiets with CAA in order to balance the dietary AA had a positive short-term effect on the Senegalese sole larvae capacity to retain protein. However, that did not translate into increased growth. On the contrary, larvae fed a more imbalanced (CTRL group) diet attained a better performance. Further studies are needed to ascertain whether this was due to an effect on the voluntary feed intake as a compensatory response to the dietary IAA imbalance in the CTRL diet or due to the higher content of tryptophan in the BAL diet.
- New developments and biological insights into the farming of Solea senegalensis reinforcing its aquaculture potentialPublication . Morais, Sofia; Aragão, C.; Cabrita, Elsa; Conceição, L. E. C.; Constenla, Maria; Costas, Benjamín; Dias, Jorge; Duncan, Neil; Engrola, S.; Estevez, Alicia; Gisbert, Enric; Mañanós, Evaristo; Valente, Luísa M. P.; Yúfera, M.; Dinis, Maria TeresaSenegalese sole was one of the earliest identified candidate species with high potential for aquaculture diversification in the south of Europe. Its culture has been possible, and commercially attempted, for several decades, but intensive production has been slow to take off. This has been explained mostly by serious disease problems, high mortality at weaning, variable growth and poor juvenile quality. However, a strong and sustained research investment that started in the eighties has led to a better understanding of the requirements and particularities of this species. More recently, better management and technical improvements have been introduced, which have led to important progress in productivity and given a new impetus to the cultivation of Senegalese sole. As a result, the last 5 years have marked a probable turning point in the culture of sole towards the development of a knowledge-driven, competitive and sustainable industry. This review will focus on the main technical improvements and advances in the state of knowledge that have been made in the last decade in areas as diverse as reproductive biology, behaviour, physiology, nutritional requirements, modulation of the immune system in response to environmental parameters and stress, and characterization and mitigation of the main disease threats. It is now clear that Senegalese sole has important particularities that differentiate it from other current and candidate marine aquaculture species, which bring about important challenges, some still unsolved, but also notable opportunities (e.g. a nutritional physiology that is better adapted to dietary vegetable ingredients), as will be discussed here.