Browsing by Author "Vargas-Chacoff, Luis"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Freshening effect on the osmotic response of the Antarctic spiny plunderfish Harpagifer antarcticusPublication . Vargas-Chacoff, Luis; Dann, Francisco; Paschke, Kurt; Oyarzun-Salazar, Ricardo; Nualart, Daniela; Martinez, Danixa; Wilson, Jonathan M.; Guerreiro, Pedro; Navarro, Jorge M.Global warming is having a significant impact around the world, modifying environmental conditions in many areas, including in zones that have been thermally stable for thousands of years, such as Antarctica. Stenothermal sedentary intertidal fish species may suffer due to warming, notably if this causes water freshening from increased freshwater inputs. Acute decreases in salinity, from 33 down to 5, were used to assess osmotic responses to environmental salinity fluctuations in Antarctic spiny plunderfish Harpagifer antarcticus, in particular to evaluate if H. antarcticus is able to cope with freshening and to describe osmoregulatory responses at different levels (haematological variables, muscle water content, gene expression, NKA activity). H. antarcticus were acclimated to a range of salinities (33 as control, 20, 15, 10 and 5) for 1 week. At 5, plasma osmolality and calcium concentration were both at their lowest, while plasma cortisol and percentage muscle water content were at their highest. At the same salinity, gill and intestine Na+-K+-ATPase (NKA) activities were at their lowest and highest, respectively. In kidney, NKA activity was highest at intermediate salinities (15 and 10). The salinity-dependent NKA mRNA expression patterns differed depending on the tissue. Marked changes were also observed in the expression of genes coding membrane proteins associated with ion and water transport, such as NKCC2, CFTR and AQP8, and in the expression of mRNA for the regulatory hormone prolactin (PRL) and its receptor (PRLr). Our results demonstrate that freshening causes osmotic imbalances in H. antarcticus, apparently due to reduced capacity of both transport and regulatory mechanisms of key organs to maintain homeostasis. This has implications for fish species that have evolved in stable environmental conditions in the Antarctic, now threatened by climate change.
- The immune system in antarctic and subantarctic fish of the genus harpagifer is affected by the effects of combined microplastics and thermal increasePublication . Nualart, Daniela P.; Guerreiro, Pedro Miguel; Paschke, Kurt; McCormick, Stephen D.; Cheng, Chi-Hing Christina; Vargas-Chacoff, LuisRising ocean temperatures due to climate change, combined with the intensification of anthropogenic activity, may lead to changes in the physiology and distribution of native species. Compounding climate stress, microplastic particles (MPs) enter the oceans through wastewater and the breakdown of macroplastics. Depending on their composition, they can be harmful and act as a vehicle for toxic substances, although their effects on native Antarctic and subantarctic species are unknown. Notothenioid fish are members of this group and are found inside and outside Antarctica, such as the Harpagifer, which has adapted to the cold and is particularly sensitive to thermal increases. Here, we aimed to evaluate the innate immune response in the head kidney, spleen, and foregut of two notothenoid fish, Harpagifer antarcticus and Harpagifer bispinis, exposed to elevated temperatures and PVC (polyvinyl chloride) microplastics. Adults from both species were collected on King George Island (Antarctica) and Punta Arenas (Chile), respectively. Specimens were assigned to a control group or exposed to a temperature increase (TI) or PVC microplastics (MPs), separately or in combination (MPs + TI). MP exposures were oral (gavage) for 24 h or aqueous (in a bath) for 24 and 48 h. Using real-time qPCR, we evaluated the relative gene expression of markers involved in the innate immune response, including tlr2 (toll-like receptor 2), tlr4 (toll-like receptor 4), myd88 (myeloid differentiation factor 88), nfkb (nuclear factor kb), il6 (interleukin 6), and il8 (irterleukin 8). We found differences between treatments when H. antarcticus and H. bispinis were exposed independently to MPs or thermal increase (TI) in the experiment with a cannula, showing an up-regulation in transcripts. In contrast, a down-regulation was observed when exposed in combination to MP + TI, which looked to be tissue-dependent. However, transcripts related to innate immunity in the bath experiment increased when exposure to both stressors was combined, mostly at 48 h. These results highlight the importance of evaluating the effects of multiple stressors, both independently and in combination, and whether these species will have the capacity to adapt or survive under these conditions, especially in waters where temperature is increasing and pollution is also rising, primarily from MP-PVC, a plastic widely used in various industries and among the population.
- Isolation Driven Divergence in Osmoregulation in Galaxias maculatus (Jenyns, 1848) (Actinopterygii: Osmeriformes)Publication . Ruiz-Jarabo, Ignacio; Gonzalez-Wevar, Claudio A.; Oyarzun, Ricardo; Fuentes, Juan; Poulin, Elie; Bertran, Carlos; Vargas-Chacoff, LuisBackgroundMarine species have colonized extreme environments during evolution such as freshwater habitats. The amphidromous teleost fish, Galaxias maculatus is found mainly migrating between estuaries and rivers, but some landlocked populations have been described in lakes formed during the last deglaciation process in the Andes. In the present study we use mtDNA sequences to reconstruct the historical scenario of colonization of such a lake and evaluated the osmoregulatory shift associated to changes in habitat and life cycle between amphidromous and landlocked populations.ResultsStandard diversity indices including the average number of nucleotide differences (Pi) and the haplotype diversity index (H) indicated that both populations were, as expected, genetically distinctive, being the landlocked population less diverse than the diadromous one. Similarly, pairwise G(ST) and N-ST comparison detected statistically significant differences between both populations, while genealogy of haplotypes evidenced a recent founder effect from the diadromous stock, followed by an expansion process in the lake. To test for physiological differences, individuals of both populations were challenged with a range of salinities from 0 to 30 ppt for 8 days following a period of progressive acclimation. The results showed that the landlocked population had a surprisingly wider tolerance to salinity, as landlocked fish survival was 100% from 0 to 20 ppt, whereas diadromous fish survival was 100% only from 10 to 15 ppt. The activity of ATPase enzymes, including Na+/K+-ATPase (NKA), and H+-ATPase (HA) was measured in gills and intestine. Activity differences were detected between the populations at the lowest salinities, including differences in ATPases other than NKA and HA. Population differences in mortality are not reflected in enzyme activity differences, suggesting divergence in other processes.ConclusionsThese results clearly demonstrate the striking adaptive changes of G. maculatus osmoregulatory system, especially at hyposmotic environments, associated to a drastic shift in habitat and life cycle at a scale of a few thousand years.
- LPS modulates the expression of iron-related immune genes in two Antarctic notothenoidsPublication . Martínez, Danixa Pamela; Sousa, Carmen; Oyarzún, Ricardo; Pontigo, Juan Pablo; Canario, Adelino; Power, Deborah; Vargas-Chacoff, Luis; Guerreiro, PedroThe non-specific immunity can induce iron deprivation as a defense mechanism against potential bacterial pathogens, but little information is available as to its role in Antarctic fish. In this study the response of iron metabolism related genes was evaluated in liver and head kidney of the Antarctic notothenoids Notothenia coriiceps and Notothenia rossii 7 days after lipopolysaccharide (LPS) injection. Average plasma Fe2+ concentration was unaffected by treatment in any of the species. The gene expression response to LPS varied between tissues and species, being stronger in N. coriiceps and more prominent in the head kidney than liver. The reaction to LPS was marked by increased individual variability in most genes analyzed, even when the change in expression was not statistically significant, suggesting different individual sensitivity and coping responses in these wild fish. We found that iron related genes had an attenuated and homogenous response to LPS but there was no detectable relationship between plasma Fe2+ and gene expression. However, overall in both tissues and species LPS exposure set a multilevel response that concur to promote intracellular accumulation of iron, an indication that Antarctic Notothenoids use innate nutritional immunity as a resistance mechanism against pathogens.
