Browsing by Author "Vieira, Rui P."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- A blueprint for an inclusive, global deep-sea ocean decade field programPublication . Howell, Kerry L.; Hilário, Ana; Allcock, A. Louise; Bailey, David M.; Baker, Maria; Clark, Malcolm R.; Colaço, Ana; Copley, Jon; Cordes, Erik E.; Danovaro, Roberto; Dissanayake, Awantha; Escobar, Elva; Esquete, Patricia; Gallagher, Austin J.; Gates, Andrew R.; Gaudron, Sylvie M.; German, Christopher R.; Gjerde, Kristina M.; Higgs, Nicholas D.; Le Bris, Nadine; Levin, Lisa A.; Manea, Elisabetta; McClain, Craig; Menot, Lenaick; Mestre, Nélia; Metaxas, Anna; Milligan, Rosanna J.; Muthumbi, Agnes W. N.; Narayanaswamy, Bhavani E.; Ramalho, Sofia P.; Ramirez-Llodra, Eva; Robson, Laura M.; Rogers, Alex D.; Sellanes, Javier; Sigwart, Julia D.; Sink, Kerry; Snelgrove, Paul V. R.; Stefanoudis, Paris V.; Sumida, Paulo Y.; Taylor, Michelle L.; Thurber, Andrew R.; Vieira, Rui P.; Watanabe, Hiromi K.; Woodall, Lucy C.; Xavier, Joana R.The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021-2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (> 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making "sampling design to knowledge application" recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program 'Challenger 150,' highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14.
- Diet consistency but large-scale isotopic variations in a deep-sea shark: the case of the velvet belly lantern shark, Etmopterus spinax, in the northeastern Atlantic region and Mediterranean SeaPublication . Besnard, Lucien; Duchatelet, Laurent; Bird, Christopher S.; Le Croizier, Gaël; Michel, Loïc; Pinte, Nicolas; Lepoint, Gilles; Schaal, Gauthier; Vieira, Rui P.; Gonçalves, Jorge M. S.; Martin, Ulrich; Mallefet, JérômeDeep-sea elasmobranchs are commonly reported as bycatch of deep-sea fisheries and their subsequent loss has been highlighted as a long-running concern to the ecosystem ecological functioning. To understand the possible consequences of their removal, information on basic ecological traits, such as diet and foraging strategies, is needed. Such aspects have been widely studied through stomach content analysis but the lack of long-term dietary information requires other tools to be used such as stable isotopes. This study examines nitrogen and carbon isotope compositions of the velvet belly lantern shark, Etmopterus spinax, one of the most impacted shark species in northeastern Atlantic fisheries as a result of accidental catches. E. spinax was sampled at four different locations, characterized by contrasting oceanographic and ecological conditions: the western Mediterranean Sea (near the Balearic Islands), the southern Iberian upwelling system, Rockall Trough and southwestern Norwegian fjords. Stomach content analysis revealed similar prey species among sites, with a diet dominated by Euphausiacea (mostly Meganyctiphanes norvegica) and an ontogenetic shift towards small teleost fishes, cephalopods or other crustaceans. Despite these similarities, muscle stable isotope compositions differed across sampled locations. Rather than clear dietary differences, the contrasted isotopic values are likely to reflect differences in environmental settings and biogeochemical processes affecting nutrient dynamics at the base of the food webs.
- Ecophysiological effects of mercury bioaccumulation and biochemical stress in the deep-water mesopredator Etmopterus spinax (Elasmobranchii; Etmopteridae)Publication . Rodrigues, Andreia C.M.; Gravato, Carlos; Galvão, Daniela; Silva, Virgília S.; Soares, Amadeu M.V.M.; Gonçalves, Jorge Manuel Santos; Ellis, Jim R.; Vieira, Rui P.Mercury (Hg) is a non-essential metal that can have toxic effects on the fitness of organisms and tends to bioaccumulate with age and to biomagnify in higher trophic levels. Few studies have assessed oxidative stress and neurotoxicity in deep-water sharks. This study evaluated early ontogenetic changes and physiological effects (antioxidant defences, oxidative damage, aerobic metabolism and neurotransmission functions) of Hg accumulation in the white muscle and brain tissues of the velvet belly lantern shark Etmopterus spinax from the southern Iberian coast (NE Atlantic). Results suggested that the low mercury concentrations observed may induce acute effects in E. spinax before they reach sexual maturity. We found different Hg concentrations in E. spinax: [Hg] males > [Hg] females; [Hg] muscle > [Hg] brain. Females appeared to have higher redox capability translated into higher activities and levels of antioxidant defences than males. However, higher levels of oxidative damage were also observed in females. Whilst the mechanisms underlying these effects remain unknown, these results suggest differences in mercury accumulation between tissues and sex, and potentially deleterious effects on oxidative stress status and neurophysiology of E. spinax, potentially impairing swimming performance and reproduction, which could subsequently impact on the health of both individuals and population.
- Lost fishing gear and litter at Gorringe Bank (NE Atlantic)Publication . Vieira, Rui P.; Raposo, Isabel P.; Sobral, Paula; Gonçalves, J. M. S.; Bell, Katherine L. C.; Cunha, Marina R.Studies concerning marine litter have received great attention over the last several years by the scientific community mainly due to their ecological and economic impacts in marine ecosystems, from coastal waters to the deep ocean seafloor. The distribution, type and abundance of marine litter in Ormonde and Gettysburg, the two seamounts of Gorringe Bank, were analyzed from photo and video imagery obtained during ROV-based surveys carried out at 60–3015 m depths during the E/V Nautilus cruise NA017. Located approximately 125 nm southwest of Portugal, Gorringe Bank lays at the crossroad between the Atlantic and the Mediterranean and is therefore characterized by an intense maritime traffic and fishing activities. The high frequency of lost or discarded fishing gear, such as cables, longlines and nets, observed on Gorringe Bank suggests an origin mostly fromfishing activities,with a clear turnover in the type of litter (mostly metal, glass and to amuch lesser extent, plastic) with increasing depth. Litter was more abundant at the summit of Gorringe Bank (ca. 4 items·km−1), decreasing to less than 1 item·km−1 at the flanks and to ca. 2 items·km−1 at greater depths. Nevertheless, litter abundance appeared to be lower than in continental margin areas. The results presented herein are a contribution to support further actions for the conservation of vulnerable habitats on Gorringe Bank so that they can continue contributing to fishery productivity in the surrounding region.