Browsing by Author "Zhai, Wanying"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Population genomics of an icefish reveals mechanisms of glacier-driven adaptive radiation in Antarctic notothenioidsPublication . Lu, Ying; Li, Wenhao; Li, Yalin; Zhai, Wanying; Zhou, Xuming; Wu, Zhichao; Jiang, Shouwen; Liu, Taigang; Wang, Huamin; Hu, Ruiqin; Zhou, Yan; Zou, Jun; Hu, Peng; Guan, Guijun; Xu, Qianghua; Canario, Adelino; Chen, LiangbiaoBackground Antarctica harbors the bulk of the species diversity of the dominant teleost fish suborder—Notothenioidei. However, the forces that shape their evolution are still under debate. Results We sequenced the genome of an icefish, Chionodraco hamatus, and used population genomics and demographic modelling of sequenced genomes of 52 C. hamatus individuals collected mainly from two East Antarctic regions to investigate the factors driving speciation. Results revealed four icefish populations with clear reproduction separation were established 15 to 50 kya (kilo years ago) during the last glacial maxima (LGM). Selection sweeps in genes involving immune responses, cardiovascular development, and photoperception occurred differentially among the populations and were correlated with population-specific microbial communities and acquisition of distinct morphological features in the icefish taxa. Population and species-specific antifreeze glycoprotein gene expansion and glacial cycle-paced duplication/degeneration of the zona pellucida protein gene families indicated fluctuating thermal environments and periodic influence of glacial cycles on notothenioid divergence. Conclusions We revealed a series of genomic evidence indicating differential adaptation of C. hamatus populations and notothenioid species divergence in the extreme and unique marine environment. We conclude that geographic separation and adaptation to heterogeneous pathogen, oxygen, and light conditions of local habitats, periodically shaped by the glacial cycles, were the key drivers propelling species diversity in Antarctica.
- Toll-like receptor evolution: does temperature matter?Publication . Sousa, Carmen; Fernandes, Stefan A.; Cardoso, João; Wang, Ying; Zhai, Wanying; Guerreiro, Pedro; Chen, Liangbiao; Canario, A.V.M.; Power, DeborahToll-like receptors (TLRs) recognize conserved pathogen-associated molecular patterns (PAMPs) and are an ancient and well-conserved group of pattern recognition receptors (PRRs). The isolation of the Antarctic continent and its unique teleost fish and microbiota prompted the present investigation into Tlr evolution. Gene homologues of tlr members in teleosts from temperate regions were present in the genome of Antarctic Nototheniidae and the non-Antarctic sister lineage Bovichtidae. Overall, in Nototheniidae apart from D. mawsoni, no major tlr gene family expansion or contraction occurred. Instead, lineage and species-specific changes in the ectodomain and LRR of Tlrs occurred, particularly in the Tlr11 superfamily that is well represented in fish. Positive selective pressure and associated sequence modifications in the TLR ectodomain and within the leucine-rich repeats (LRR), important for pathogen recognition, occurred in Tlr5, Tlr8, Tlr13, Tlr21, Tlr22, and Tlr23 presumably associated with the unique Antarctic microbiota. Exposure to lipopolysaccharide (Escherichia coli O111:B4) Gram negative bacteria did not modify tlr gene expression in N. rossii head-kidney or anterior intestine, although increased water temperature (+4 degrees C) had a significant effect.