Browsing by Author "Zurita, Grover"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Extracting repetitive transients for rotating machinery diagnosis using multiscale clustered grey infogramPublication . Li, Chuan; Cabrera, Diego; Oliveira, José Valente de; Sanchez, Rene-Vinicio; Cerrada, Mariela; Zurita, GroverLocal faults of rotating machinery usually result in repetitive transients whose impulsiveness or cyclostationarity can be employed as faulty signatures. However, to simultaneously accommodate the impulsiveness and the cyclostationarity is a challenging task for rotating machinery diagnostics. Inspired by recently-reported infogram that is sensitive to either the impulsiveness or the cyclostationarity using spectral negentropy defined in time domain or frequency domain, a multiscale clustering grey infogram (MCGI) is proposed by combining both negentropies in a grey fashion using multiscale clustering. Fourier spectrum of the vibration signal is decomposed into multiple scales with different initial resolutions. In each scale, fine segments are grouped using hierarchical clustering. Meanwhile, both time-domain and frequency-domain spectral negentropies are taken into account to guide the clustering through grey evaluation of both negentropies. Numerical simulations and experimental tests are carried out for validating the proposed MCGI. For comparison, peer methods are applied to challenge different noises and interferences. The results show that, thanks to the multiscale clustering of the spectrum and the grey evaluation of both negentropies, the present MCGI is robust in extracting the repetitive transients for the rotating machinery diagnosis. (C) 2016 Elsevier Ltd. All rights reserved.
- Fuzzy determination of informative frequency band for bearing fault detectionPublication . Li, Chuan; Oliveira, José Valente de; Sanchez, Rene-Vinicio; Cerrada, Mariela; Zurita, Grover; Cabrera, DiegoDetecting early faults in rolling element bearings is a crucial measure for the health maintenance of rotating machinery. As faulty features of bearings are usually demodulated into a high-frequency band, determining the informative frequency band (IFB) from the vibratory signal is a challenging task for weak fault detection. Existing approaches for IFB determination often divide the frequency spectrum of the signal into even partitions, one of which is regarded as the IFB by an individual selector. This work proposes a fuzzy technique to select the IFB with improvements in two aspects. On the one hand, an IFB-specific fuzzy clustering method is developed to segment the frequency spectrum into meaningful sub-bands. Considering the shortcomings of the individual selectors, on the other hand, three commonly-used selectors are combined using a fuzzy comprehensive evaluation method to guide the clustering. Among all the meaningful sub-bands, the one with the minimum comprehensive cost is determined as the IFB. The bearing faults, if any, can be detected from the demodulated envelope spectrum of the IFB. The proposed fuzzy technique was evaluated using both simulated and experimental data, and then compared with the state-of-the-art peer method. The results indicate that the proposed fuzzy technique is capable of generating a better IFB, and is suitable for detecting bearing faults.
- Observer-biased bearing condition monitoring: from fault detection to multi-fault classificationPublication . Li, Chuan; Oliveira, José Valente de; Cerrada, Mariela; Pacheco, Fannia; Cabrera, Diego; Sanchez, Vinicio; Zurita, GroverBearings are simultaneously a fundamental component and one of the principal causes of failure in rotary machinery. The work focuses on the employment of fuzzy clustering for bearing condition monitoring, i.e., fault detection and classification. The output of a clustering algorithm is a data partition (a set of clusters) which is merely a hypothesis on the structure of the data. This hypothesis requires validation by domain experts. In general, clustering algorithms allow a limited usage of domain knowledge on the cluster formation process. In this study, a novel method allowing for interactive clustering in bearing fault diagnosis is proposed. The method resorts to shrinkage to generalize an otherwise unbiased clustering algorithm into a biased one. In this way, the method provides a natural and intuitive way to control the cluster formation process, allowing for the employment of domain knowledge to guiding it. The domain expert can select a desirable level of granularity ranging from fault detection to classification of a variable number of faults and can select a specific region of the feature space for detailed analysis. Moreover, experimental results under realistic conditions show that the adopted algorithm outperforms the corresponding unbiased algorithm (fuzzy c-means) which is being widely used in this type of problems. (C) 2016 Elsevier Ltd. All rights reserved.