Browsing by Author "de Pedro, Nuria"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Components and regulation of nuclear transport processesPublication . Cautain, Bastien; Hill, Richard; de Pedro, Nuria; Link, WolfgangThe spatial separation of DNA replication and gene transcription in the nucleus and protein translation in the cytoplasm is a uniform principle of eukaryotic cells. This compartmentalization imposes a requirement for a transport network of macromolecules to shuttle these components in and out of the nucleus. This nucleo-cytoplasmic transport of macromolecules is critical for both cell physiology and pathology. Consequently, investigating its regulation and disease-associated alterations can reveal novel therapeutic approaches to fight human diseases, such as cancer or viral infection. The characterization of the nuclear pore complex, the identification of transport signals and transport receptors, as well as the characterization of the Ran system (providing the energy source for efficient cargo transport) has greatly facilitated our understanding of the components, mechanisms and regulation of the nucleo-cytoplasmic transport of proteins in our cells. Here we review this knowledge with a specific emphasis on the selection of disease-relevant molecular targets for potential therapeutic intervention.
- Discovery of a Novel, Isothiazolonaphthoquinone-Based Small Molecule Activator of FOXO Nuclear-Cytoplasmic ShuttlingPublication . Cautain, Bastien; Castillo, Francisco; Musso, Loana; Ferreira, Bibiana; de Pedro, Nuria; Quesada, Lorena Rodriguez; Machado, Susana; Vicente, Francisca; Dallavalle, Sabrina; Link, WolfgangFOXO factors are tumour suppressor proteins commonly inactivated in human tumours by posttranslational modifications. Furthermore, genetic variation within the FOXO3a gene is consistently associated with human longevity. Therefore, the pharmacological activation of FOXO proteins is considered as an attractive therapeutic approach to treat cancer and age-related diseases. In order to identify agents capable of activating FOXOs, we tested a collection of small chemical compounds using image-based high content screening technology. Here, we report the discovery of LOM612 (compound 1a), a newly synthesized isothiazolonaphthoquinone as a potent FOXO relocator. Compound 1a induces nuclear translocation of a FOXO3a reporter protein as well as endogenous FOXO3a and FOXO1 in U2OS cells in a dose-dependent manner. This activity does not affect the subcellular localization of other cellular proteins including NFkB or inhibit CRM1-mediated nuclear export. Furthermore, compound 1a shows a potent antiproliferative effect in human cancer cell lines.
- High-content screening of natural products reveals novel nuclear export inhibitorsPublication . Cautain, Bastien; de Pedro, Nuria; Garzon, Virginia Murillo; de Escalona, Maria Munoz; Menendez, Victor Gonzalez; Tormo, Jose R.; Martin, Jesus; El Aouad, Noureddine; Reyes, Fernando; Asensio, Francisco; Genilloud, Olga; Vicente, Francisca; Link, WolfgangNatural products are considered an extremely valuable source for the discovery of new drugs against diverse pathologies. As yet, we have only explored a fraction of the diversity of bioactive compounds, and opportunities for discovering new natural products leading to new drugs are huge. In the present study, U2nesRELOC, a previously established cell-based imaging assay, was employed to screen a collection of extracts of microbial origin for nuclear export inhibition activity. The fluorescent signal of untreated U2nesRELOC cells localizes predominantly to the cytoplasm. Upon treatment with the nuclear export inhibitor leptomycin B, the fluorescent-tagged reporter proteins appear as speckles in the nucleus. A proprietary collection of extracts from fungi, actinomycetes, and unicellular bacteria that covers an uncommonly broad chemical space was used to interrogate this nuclear export assay system. A two-step image-based analysis allowed us to identify 12 extracts with biological activities that are not associated with previously known active metabolites. The fractionation and structural elucidation of active compounds revealed several chemical structures with nuclear export inhibition activity. Here we show that substrates of the nuclear export receptor CRM1, such as Rev, FOXO3a and NF-B, accumulate in the nucleus in the presence of the fungal metabolite MDN-0105 with an IC50 value of 3.4 mu M. Many important processes in tumor formation and progression, as well as in many viral infections, critically depend on the nucleocytoplasmic trafficking of proteins and RNA molecules. Therefore, the disruption of nuclear export is emerging as a novel therapeutic approach with enormous clinical potential. Our work highlights the potential of applying high-throughput phenotypic imaging on natural product extracts to identify novel nuclear export inhibitors.
- Targeting nucleocytoplasmic transport in cancer therapyPublication . Hill, Richard; Cautain, Bastien; de Pedro, Nuria; Link, WolfgangThe intracellular location and regulation of proteins within each cell is critically important and is typically deregulated in disease especially cancer. The clinical hypothesis for inhibiting the nucleo-cytoplasmic transport is based on the dependence of certain key proteins within malignant cells. This includes a host of well-characterized tumor suppressor and oncoproteins that require specific localization for their function. This aberrant localization of tumour suppressors and oncoproteins results in their their respective inactivation or over-activation. This incorrect localization occurs actively via the nuclear pore complex that spans the nuclear envelope and is mediated by transport receptors. Accordingly, given the significant need for novel, specific disease treatments, the nuclear envelope and the nuclear transport machinery have emerged as a rational therapeutic target in oncology to restore physiological nucleus/cytoplasmic homeostasis. Recent evidence suggests that this approach might be of substantial therapeutic use. This review summarizes the mechanisms of nucleocytoplasmic transport, its role in cancer biology and the therapeutic potential of targeting this critical cellular process