Browsing by Issue Date, starting with "2022-10-08"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Complementary sampling methods to improve the monitoring of Coastal LagoonsPublication . Adão, Ana Catarina; Bosch, Néstor E.; Bentes, Luis; Coelho, Rui; Lino, Pedro G.; Monteiro, Pedro; Gonçalves, Jorge Manuel Santos; Erzini, KarimMonitoring the ecological status of marine coastal lagoons requires the integration of multiple indices. However, the efficacy of monitoring programs is complicated by the diverse array of habitats that conform coastal lagoons. In this study, we compared four sampling methods (25-m and 50-m beach seines, beam trawl and Riley push net) in the Ria Formosa coastal lagoon (South Portugal) for assessing fish assemblage and diversity. We compared species richness and assemblage structure with species accumulation curves and multivariate analysis, and assessed diversity patterns using taxonomic, phylogenetic and functional diversity indices. Variation in fish assemblage structure was mostly explained by gear type, and almost all diversity metrics varied not only according to sampling method but also depending on habitat characteristics and season. Based on operational costs and diversity patterns captured by each gear, we conclude that the combined use of 25-m beach seine and beam trawl is the preferred approach. The proposed methodology will provide the data necessary for assessment of ecological status of coastal lagoons.
- Red, gold and green: microbial contribution of Rhodophyta and other Algae to Green Turtle (Chelonia mydas) Gut MicrobiomePublication . Díaz-Abad, Lucía; Bacco-Mannina, Natassia; Miguel Madeira, Fernando; Serrao, Ester; Regalla, Aissa; Patrício, Ana R.; Rodrigues Frade, PedroThe fitness of the endangered green sea turtle (Chelonia mydas) may be strongly affected by its gut microbiome, as microbes play important roles in host nutrition and health. This study aimed at establishing environmental microbial baselines that can be used to assess turtle health under altered future conditions. We characterized the microbiome associated with the gastrointestinal tract of green turtles from Guinea Bissau in different life stages and associated with their food items, using 16S rRNA metabarcoding. We found that the most abundant (% relative abundance) bacterial phyla across the gastrointestinal sections were Proteobacteria (68.1 ± 13.9% “amplicon sequence variants”, ASVs), Bacteroidetes (15.1 ± 10.1%) and Firmicutes (14.7 ± 21.7%). Additionally, we found the presence of two red algae bacterial indicator ASVs (the Alphaproteobacteria Brucella pinnipedialis with 75 ± 0% and a Gammaproteobacteria identified as methanotrophic endosymbiont of Bathymodiolus, with <1%) in cloacal compartments, along with six bacterial ASVs shared only between cloacal and local environmental red algae samples. We corroborate previous results demonstrating that green turtles fed on red algae (but, to a lower extent, also seagrass and brown algae), thus, acquiring microbial components that potentially aid them digest these food items. This study is a foundation for better understanding the microbial composition of sea turtle digestive tracts.