Browsing by Issue Date, starting with "2023-08-17"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Spectral analysis, biocompounds, and physiological assessment of Cork Oak leaves: unveiling the interaction with Phytophthora cinnamomi and beyondPublication . Guerra, Rui; Pires, Rosa; Brazio, António; Cavaco, Ana Margarida; Schütz, Gabriela; Coelho, Ana CristinaThe cork oak tree (Quercus suber L.) symbolizes the Montado landscape in Portugal and is a central element in the country’s social and economic history. In recent decades, the loss of thousands of cork oaks has been reported, revealing the ongoing decline of these agroforestry ecosystems. This emblematic tree of the Mediterranean Basin is host to the soil-born root pathogen Phytophthora cinnamomi, an active cork oak decline driver. In this framework, the early diagnosis of trees infected by the oomycete by non-invasive methods should contribute to the sustainable management of cork oak ecosystems, which motivated this work. Gas exchange and visible/near-infrared (400–1100 nm) reflectance spectroscopy measurements were conducted on leaves of both control and P. cinnamomi inoculated plants. These measurements were taken at 63, 78, 91, 126, and 248 days after inoculation. Additionally, at the end of the experiment, biochemical assays of pigments, sugars, and starch were performed. The spectroscopic measurements proved effective in distinguishing between control and inoculated plants, while the standard gas exchange and biochemistry data did not exhibit clear differences between the groups. The spectral data were examined both daily and globally, utilizing the PARAFAC method applied to a three-way array of samples × wavelengths × days. The separation of the two plant groups was attributed to variations in water content (4v (O−H)); shifts in the spectra red edge; and structural modifications in the epidermal layer and leaves’ mesophyll. These spectral signatures can assist in the field identification of cork oaks that are interacting with P. cinnamomi.
- SMS-Coastal, a new Python tool to manage MOHID-based coastal operational modelsPublication . Mendonça, Fernando; Martins, Flávio; Janeiro, JoãoThis paper presents the Simulation Management System for Operational Coastal Hydrodynamic Models, or SMS-Coastal, and its novel methodology designed to automate forecast simulations of coastal models. Its working principle features a generic framework that can be easily configured for other applications, and it was implemented with the Python programming language. The system consists of three main components: the Forcing Processor, Simulation Manager, and Data Converter, which perform operations such as the management of forecast runs and the download and conversion of external forcing data. The SMS-Coastal was tested on two model realisations using the MOHID System: SOMA, a model of the Algarve coast in Portugal, and BASIC, a model of the Cartagena Bay in Colombia. The tool proved to be generic enough to handle the different aspects of the models, being able to manage both forecast cycles.
- Evaluating underwater light availability for Phytoplankton: mean light intensity in the mixed layer versus attenuation CoefficientPublication . Domingues, Rita B.; Barbosa, Ana B.The use of several light-related variables, such as the Secchi disc depth, the euphotic depth, and in particular, the diffuse attenuation coefficient (Kd), is deeply rooted in phytoplankton research, but these are not the most appropriate indicators of the amount of light available for photosynthesis. We argue that the variable of interest for phytoplankton is the mean light intensity in the mixed layer (Im), which represents the mean light to which phytoplankton cells are exposed throughout their life cycle, while being continuously mixed in the mixed layer. We use empirical data collected in different coastal ecosystems in southern Portugal to demonstrate why Im should be the preferred metric instead of the deeply rooted Kd. We show that, although the relationship between Im and Kd is inversely proportional, it is not always strong or even significant. Different Im values can be associated with the same Kd, but distinct Im have different physiological effects of phytoplankton. Therefore, Kd does not capture the amount of light available for photosynthesis, given that, unlike Im, Kd calculation does not consider the depth of the mixed layer. Therefore, we urge phytoplankton researchers to consider the measurement and calculation of Im when evaluating light-related processes in phytoplankton ecology.