Browsing by Issue Date, starting with "2024-11-27"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Lignin-furanic rigid foams: Enhanced methylene blue removal capacity, recyclability, and flame retardancyPublication . Duarte, Hugo; Brás, João; Saoudi Hassani, El Mokhtar; Aliaño González, María José; Magalhães, Solange; Alves, Luís; Valente, Artur J. M.; Eivazi, Alireza; Norgren, Magnus; Romano, Anabela; Medronho, BrunoWorldwide, populations face issues related to water and energy consumption. Water scarcity has intensified globally, particularly in arid and semiarid regions. Projections indicate that by 2030, global water demand will rise by 50%, leading to critical shortages, further intensified by the impacts of climate change. Moreover, wastewater treatment needs further development, given the presence of persistent organic pollutants, such as dyes and pharmaceuticals. In addition, the continuous increase in energy demand and rising prices directly impact households and businesses, highlighting the importance of energy savings through effective building insulation. In this regard, tannin-furanic foams are recognized as promising sustainable foams due to their fire resistance, low thermal conductivity, and high water and chemical stability. In this study, tannin and lignin rigid foams were explored not only for their traditional applications but also as versatile materials suitable for wastewater treatment. Furthermore, a systematic approach demonstrates the complete replacement of the tannin-furan foam phenol source with two lignins that mainly differ in molecular weight and pH, as well as how these parameters affect the rigid foam structure and methylene blue (MB) removal capacity. Alkali-lignin-based foams exhibited notable MB adsorption capacity (220 mg g−1), with kinetic and equilibrium data analysis suggesting a multilayer adsorption process. The prepared foams demonstrated the ability to be recycled for at least five adsorption-desorption cycles and exhibited effective flame retardant properties. When exposed to a butane flame for 5 min, the foams did not release smoke or ignite, nor did they contribute to flame propagation, with the red glow dissipating only 20 s after flame exposure.