Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 21
  • The climate of the Common Era off the Iberian Peninsula
    Publication . Abrantes, Fatima; Rodrigues, Teresa; Rufino, Marta; Salgueiro, Emilia; Oliveira, Dulce; Gomes, Sandra; Oliveira, Paulo; Costa, Ana; Mil-Homens, Mario; Drago, Teresa; Naughton, Filipa
    The Mediterranean region is a climate hot spot, sensitive not only to global warming but also to water availability. In this work we document major temperature and precipitation changes in the Iberian Peninsula and margin during the last 2000 years and propose an interplay of the North Atlantic internal variability with the three atmospheric circulation modes (ACMs), (North Atlantic Oscillation (NAO), east atlantic (EA) and Scandinavia (SCAND)) to explain the detected climate variability. We present reconstructions of sea surface temperature (SST derived from alkenones) and on-land precipitation (estimated from higher plant n-alkanes and pollen data) in sedimentary sequences recovered along the Iberian Margin between the south of Portugal (Algarve) and the northwest of Spain (Galiza) (36 to 42 degrees N). A clear long-term cooling trend, from 0 CE to the beginning of the 20th century, emerges in all SST records and is considered to be a reflection of the decrease in the Northern Hemisphere summer insolation that began after the Holocene optimum. Multi-decadal/centennial SST variability follows other records from Spain, Europe and the Northern Hemisphere. Warm SSTs throughout the first 1300 years encompass the Roman period (RP), the Dark Ages (DA) and the Medieval Climate Anomaly (MCA). A cooling initiated at 1300 CE leads to 4 centuries of colder SSTs contemporary with the Little Ice Age (LIA), while a climate warming at 1800 CE marks the beginning of the modern/Industrial Era. Novel results include two distinct phases in the MCA: an early period (900-1100 years) characterized by intense precipitation/flooding and warm winters but a cooler spring-fall season attributed to the interplay of internal oceanic variability with a positive phase in the three modes of atmospheric circulation (NAO, EA and SCAND). The late MCA is marked by cooler and relatively drier winters and a warmer spring-fall season consistent with a shift to a negative mode of the SCAND. The Industrial Era reveals a clear difference between the NW Iberia and the Algarve records. While off NW Iberia variability is low, the Algarve shows large-amplitude decadal variability with an inverse relationship between SST and river input. Such conditions suggest a shift in the EA mode, from negative between 1900 and 1970 CE to positive after 1970, while NAO and SCAND remain in a positive phase. The particularly noticeable rise in SST at the Algarve site by the mid-20th century (+/- 1970), provides evidence for a regional response to the ongoing climate warming. The reported findings have implications for decadal-scale predictions of future climate change in the Iberian Peninsula.
  • Surface and deep water variability in the Western Mediterranean (ODP Site 975) during insolation cycle 74: high-resolution calcareous plankton and molecular biomarker signals
    Publication . Quivelli, Ornella; Marino, Maria; Rodrigues, Teresa; Girone, Angela; Maiorano, Patrizia; Abrantes, Fatima; Salgueiro, Emilia; Bassinot, Frank
    We reconstructed changes in productivity and surface/subsurface and deep-water dynamics in the Western Mediterranean through a multi-proxy study of Ocean Drilling Program Site 975 between late Marine Isotope Stage (MIS) 20 and early interglacial MIS 19. Our high-resolution study (down to similar to 200-year resolution) combines calcareous plankton assemblages (coccolithophores and foraminifera), biomarkers (C-37-alkenones, n-alkanes, n-alcohols) and elemental proxies (total organic carbon, total nitrogen, calcium carbonate). Surface water conditions are derived (i) from high-resolution delta O-18 and delta C-13 records obtained from the planktonic foraminifer Globigerina bulloides, and (ii) from summer and winter, foraminifera-based sea surface temperature reconstructions (SSTJAS-foram, SSTJFM-foram) achieved through transfer function. The integration of the whole dataset makes it possible to identify in the Balearic Sea, and to accurately characterize for the first time, an Organic Rich Layer (ORL) during latest MIS 20-early MIS 19, close to i-cycle 74. Its presence is marked firstly by higher values of total nitrogen (TN) and an increase of total C-37-alkenone and total organic carbon (TOC) preserved in the sediments. The multi-proxy approach reveals that the deglacial phase played a prominent role for ORL formation that was characterized by centennial scale phases. The alcohol preservation index (API) suggests that the shoaling of the circulation, which boosted marine productivity, started in the deglaciation and, in combination with freshening by Atlantic water inflow/riverine input and surface water buoyancy during sea level rising, culminated during the ORL event. At this time calcareous plankton proliferated on subsurface-surface waters, benefiting from ameliorating conditions, which promoted maximum marine productivity and higher organic matter preservation on the seafloor.
  • Pronounced northward shift of the westerlies during MIS 17 leading to the strong 100-kyr ice age cycles
    Publication . Goni, Maria Fernanda Sanchez; Ferretti, Patrizia; Polanco-Martinez, Josue M.; Rodrigues, Teresa; Alonso-Garcia, Montserrat; Javier Rodriguez-Tovar, Francisco; Dorador, Javier; Desprat, Stephanie
    The MIS 17 interglacial, similar to 715-675 ka, marks the end of the Mid-Pleistocene Transition as intensified, long and asymmetrical 100-kyr ice age cycles became eminently established. Increasing arrival of moisture to the Northern Hemisphere high latitudes, resulting from the northwestward migration of the Subpolar Front and the intensification of the Norwegian Greenland Seas (NGS) convection, has been put forward to explain the emergence of this quasi-periodic 100-kyr cycle. However, testing this hypothesis is problematic with the available North Atlantic precipitation data. Here we present new pollen-based quantitative seasonal climate reconstructions from the southwestern Iberian margin that track changes in the position and intensity of the westerlies. Our data compared to changes in North Atlantic deep and surface water conditions show that MIS 17 interglacial was marked by three major changes in the direction and strength of the westerlies tightly linked to oceanographic changes. In particular, we report here for the first time a drastic two-steps northward shift of the westerlies centered at similar to 693 ka that ended up with the sustained precipitation over southern European. This atmospheric reorganization was associated with northwestward migration of the Subpolar Front, strengthening of the NGS deep water formation and cooling of the western North Atlantic region. This finding points to the substantial arrival of moisture to the Northern Hemisphere high latitudes at the time of the decrease in summer energy and insolation contributing to the establishment of strong 100-kyr cycles. (C) 2019 Elsevier B.V. All rights reserved.
  • A southern Portuguese Margin Perspective of Marine Isotope Stage 47—An interglacial in the 41 kyr World
    Publication . Voelker, Antje; Rodrigues, Teresa; Trotta, Samanta; Marino, Maria; Kuhnert, Henning
    In order to better understand interglacial climate variability within the 41 kyr world, we produced high-resolution climate records for interglacial Marine Isotope Stage (MIS) 47 (1424-1452 ka) at IODP Site U1387 (36 degrees 48 ' N, 7 degrees 43 ' W) on the southern Portuguese margin. Using benthic and planktonic foraminifera stable isotope records, U-37(k') sea-surface temperature (SST), and plankton assemblage data we investigated Mediterranean Outflow Water (MOW) and surface water conditions. The MOW-level records indicate a poorly ventilated and sluggish bottom current during the MIS 48/MIS 47 transition in association with the insolation maximum, whereas a well-ventilated MOW formed a contourite layer during the second insolation maximum. The benthic delta O-18 record shows a fairly abrupt change during the deglaciation of MIS 48, while the surface waters experienced a terminal stadial event that was associated with initial cooling and freshening followed by stepwise warming until interglacial SST was reached at 1450 ka. Interglacial conditions with SST of 24 degrees C or higher persisted until 1427 ka, although warm SST prevailed into MIS 46. The persistent and prolonged warmth is attributed to a northward expansion of the subtropical gyre during MIS 47 as reflected by the dominance of subtropical-tropical planktonic foraminifera species and the presence of warm water coccolithophores taxa.
  • The complexity of millennial-scale variability in southwestern Europe during MIS 11
    Publication . Oliveira, Dulce; Desprat, Stephanie; Rodrigues, Teresa; Naughton, Filipa; Hodell, David; Trigo, Ricardo; Rufino, Marta; Lopes, Cristina; Abrantes, Fatima; Sanchez Goni, Maria Fernanda
    Climatic variability of Marine Isotope Stage (MIS) 11 is examined using a new high-resolution direct land sea comparison from the SW Iberian margin Site U1385. This study, based on pollen and biomarker analyses, documents regional vegetation, terrestrial climate and sea surface temperature (SST) variability. Suborbital climate variability is revealed by a series of forest decline events suggesting repeated cooling and drying episodes in SW Iberia throughout MIS 11. Only the most severe events on land are coeval with SST decreases, under larger ice volume conditions. Our study shows that the diverse expression (magnitude, character and duration) of the millennial-scale cooling events in SW Europe relies on atmospheric and oceanic processes whose predominant role likely depends on baseline climate states. Repeated atmospheric shifts recalling the positive North Atlantic Oscillation mode, inducing dryness in SW Iberia without systematical SST changes, would prevail during low ice volume conditions. In contrast, disruption of the Atlantic meridional overturning circulation (AMOC), related to iceberg discharges, colder SST and increased hydrological regime, would be responsible for the coldest and driest episodes of prolonged duration in SW Europe. (C) 2016 University of Washington. Published by Elsevier Inc. All rights reserved.
  • Sea-surface temperature, productivity and hydrological changes in the Northern Indian Ocean (Maldives) during the interval similar to 575-175 ka (MIS 14 to 7)
    Publication . Alonso-Garcia, Montserrat; Rodrigues, Teresa; Abrantes, Fatima; Padilha, M.; Alvarez-Zarikian, C. A.; Kunkelova, T.; Wright, J. D.; Betzler, C.
    The South Asian Monsoon (SAM) drives seasonal changes in the atmospheric and ocean circulation of the tropical Indian Ocean, affecting precipitation on land and oceanic primary productivity. This work examined sediments from the International Ocean Discover Program (IODP) Site U1467 (IODP Expedition 359) located in the Maldives Inner Sea (Northern Indian Ocean) at a water depth of 487 m. The Maldives Inner Sea is a perfect location to study past changes in tropical climate and ocean circulation related to monsoon dynamics in the Equatorial Indian Ocean. This study focuses on the similar to 575-175 ka interval, from Marine Isotope Stage (MIS) 14 to 7, an important period for human evolution and dispersal to Eurasia. We reconstructed sea-surface temperature (SST), based on alkenone unsaturation index (U-37(K')), hydrological changes, based on terrestrial input of n-alkanes, and past surface ocean productivity, based on total C-37 alkenones concentration. The U-37(K')-SST record shows a difference of about 1.5 degrees C between glacial and interglacial periods, clearly showing all stages and substages from MIS 14 to 7, and revealing a connection between ice sheets extension and SST at the equatorial region. The n-alkanes concentration and average chain length index indicate vegetation changes at the Indian Peninsula with drier conditions generally associated with glacial periods. Precipitation increases abruptly at the end of terminations, lasting for a variable time interval in each interglacial period, except for MIS 13. However, other mechanisms superimposed to the glacial-interglacial forcing, such as the Indian Ocean Dipole (IOD) mode, have been invoked to explain shorter-scale variability in precipitation over India. The total alkenone concentration record indicates that primary productivity at Site U1467 is strongly associated with orbital changes, probably related to the summer inter-tropical insolation gradient (SITIG, 23N-23S on June 21st). High primary productivity occurred during intervals of low SITIG, which resulted in strong inter-monsoon (April-May and October-November) Indian Ocean Equatorial Westerlies (IEW) and reduced precipitation in the equatorial region. This mechanism may also be related to the IOD, which affects the strength of the IEW.
  • Marine Isotope Stage 4 (71–57 ka) on the Western European margin: insights to the drainage and dynamics of the Western European Ice Sheet
    Publication . Toucanne, Samuel; Rodrigues, Teresa; Menot, Guillemette; Soulet, Guillaume; Cheron, Sandrine; Billy, Isabelle; Eynaud, Frederique; Antoine, Pierre; Sinninghe Damste, Jaap S.; Bard, Edouard; Sanchez Goñi, Maria-Fernanda
    Marine Isotope Stage (MIS) 4 (ca. 71–57 ka; within the Middle Weichselian Substage) is considered a significant Pleistocene glaciation, but it remains poorly constrained in comparison to that of the Late Weichselian Last Glacial Maximum (LGM; ca. 29–19 ka, during MIS 2), or even the Late Saalian MIS 6 (ca. 190–130 ka). Most MIS 4 glacial landforms in Europe were erased by the more extensive LGM ice advance, precluding a robust recon struction of its extent and dynamic through time. Marine sedimentary archives, in preserving the source-to-sink sediment transfer signals of ice-sheet and glacier processes, help to bridge this gap. Here, the signals west of the European Ice Sheet (EIS) are tracked for MIS 4 from the deep Bay of Biscay (NE Atlantic), which was the outlet for Fennoscandian Ice Sheet (FIS) sediment-laden meltwater during extensive glaciations, specifically when the British-Irish Ice Sheet (BIIS) and the FIS coalesced into the North Sea (as during MIS 6 and the LGM). Sedi mentological, geochemical, and mineralogical proxies reveal the absence of FIS-derived material in Bay of Biscay sediment throughout MIS 4, which indicates that FIS meltwater and huge river systems from the North European Plain never drained into the Bay of Biscay at that time. This suggests that contrary to MIS 6 and the LGM, the BIIS and FIS were not likely large enough to coalesce and form a (grounded) ice bridge onto the North Sea, thus confirming geomorphic evidence for a significant, but relatively limited, glaciation in Europe during MIS 4. Closer to the Bay of Biscay, ice-marginal fluctuations of the BIIS are identified in the Celtic-Irish Sea region from the deep-sea record. More specifically, our findings suggest an early retreat of the Irish Sea Ice Stream as soon as ca. 68–65 ka, a few millennia before the demise of the EIS, and the Northern Hemisphere ice sheets as a whole, during Heinrich Stadial (HS) 6. This pattern is similar to that already recorded during MIS 2. Finally, this study reveals that the MIS 4 period in Western Europe corresponds, as for MIS 2, to a complex combination of general ice advance interspersed by preliminary-to-final EIS demises highlighted by HS conditions.
  • Control mechanisms of primary productivity revealed by Calcareous Nannoplankton from marine isotope stages 12 to 9 at the Shackleton Site (IODP Site U1385)
    Publication . González‐Lanchas, A.; Flores, J.‐A.; Sierro, F. J.; Sánchez Goñi, M. F.; Rodrigues, Teresa; Ausín, B.; Oliveira, Dulce; Naughton, F.; Marino, M.; Maiorano, P.; Balestra, B.
    Nowadays, primary productivity variations at the SW Iberian Margin (IbM) are primarily controlled by wind-driven upwelling. Thus, major changes in atmospheric circulation and wind regimes between the Marine Isotope Stages (MIS) 12 and 9 could have driven substantial changes in phytoplankton productivity which remains poorly understood. We present a high-resolution calcareous nannofossil record from the Shackleton Site Integrated Ocean Discovery Program Site U1385 that allow the assessment of primary productivity and changing surface conditions on orbital and suborbital timescales over the SW IbM. These records are directly compared and integrated with terrestrial – Mediterranean forest pollen – and marine – benthic and planktic oxygen stable isotopes (δ18O), alkenone concentration [C37], Uk´37-Sea Surface Temperature and % C37:4 – proxy records from Site U1385. Our results indicate intra-interglacial increase in primary productivity together with intensification of the Azores anticyclonic high-pressure cell beyond the summer that suggests a two-phase upwelling behavior during the full interglacial MIS 11c (420–397ka), potentially drived by atmospheric NAO-like variability. Primary productivity is largely enhanced during the inception of glacial MIS 10 and the early MIS 10 (392–356ka), linked to intensified upwelling and associated processes during a period of strengthened atmospheric circulation. In agreement with the conditions observed during Heinrich events of the last glacial cycle, primary productivity reductions during abrupt cold episodes, including the Heinrich-type (Ht) events 4 to 1 (436, 392, 384 and 339ka) and the Terminations V and IV, seems to be the result of halocline formation induced by meltwater arrival, reducing the regional upward nutrient transference
  • Multiproxy record of suborbital-scale climate changes in the Algero-Balearic Basin during late MIS 20-Termination IX
    Publication . Quivelli, Ornella; Marino, Maria; Rodrigues, Teresa; Girone, Angela; Maiorano, Patrizia; Bertini, Adele; Niccolini, Gabriele; Trotta, Samanta; Bassinot, Franck
    High-resolution quantitative analyses have been carried out in samples from the Ocean Drilling Program (ODP) Site 975 in the Algero-Balearic basin through late Marine Isotope Stage (MIS 20)-Termination IX (800-784 ka). The multi-proxy study combines data of planktonic delta O-18, delta C-13, calcareous plankton (coccolithophores, foraminifera), palynomorphs, alkenone-based sea surface temperature (SST), % alkenone tetraunsatured (% C-37:4), and terrigenous biomarkers (C-23-C-31 n-alkanes, C-22-C-30 n-alkanols) with the aim to reconstruct climate-induced paleoenvironmental changes at orbital-submillennial scale, in a crucial time interval of the Early-Midde Pleistocene transition. The surface water delta O-18(sw) has been reconstructed from delta O-18(G.bulloides) and alkenone-based SST as a proxy for salinity changes. The late MIS 20 has been subdivided in several phases based on evidence of (i) meltwater events of polar origin or from surrounding mountain glaciers, (ii) changes in the production rate of Western Mediterranean Deep Water (WMDW) and in deep water ventilation, (iii) variation in terrestrial input and river discharge, and iv) variations in the strength of the north westerlies, and polar front shift. Following a glacial stadial (lasting ca 3 kyr) marked by the strongest WMDW production, coeval with a boreal summer insolation minimum and a marked low sea level, the latest MIS 20 is characterized by a terminal stadial event (lasting ca 3.5 kyr), which is traced by the occurrence of cold-low salinity water, pointing to meltwater advection at the site location. Short-term warm and cool events occurred through Termination IX during sea level rise and insolation increase, preceding the onset of full MIS 19c, characterized by an organic rich layer (ORL) associated with insolation cycle 74. The succession of these climate and oceanographic events has been compared to evidences from other Mediterranean sites, highlighting similar basin-wide patterns, which recall the climate evolution of Termination I. The comparison of our results with the climate proxies from the Integrated Ocean Drilling Program (IODP) Site U1385 located west of Iberian margin made it possible to point at the connection between Mediterranean oceanographic and atmospheric dynamics and the northern hemisphere ice-sheet instability, providing insight on the relationship with the Atlantic meridional overturning circulation and thermal front migration. (C) 2021 Elsevier Ltd. All rights reserved.
  • Unraveling the forcings controlling the vegetation and climate of the best orbital analogues for the present interglacial in SW Europe
    Publication . Oliveira, Dulce; Desprat, Stéphanie; Yin, Qiuzhen; Naughton, Filipa; Trigo, Ricardo; Rodrigues, Teresa; Abrantes, Fatima; Sánchez Goñi, Maria Fernanda
    The suitability of MIS 11c and MIS 19c as analogues of our present interglacial and its natural evolution is still debated. Here we examine the regional expression of the Holocene and its orbital analogues over SW Iberia using a model-data comparison approach. Regional tree fraction and climate based on snapshot and transient experiments using the LOVECLIM model are evaluated against the terrestrial-marine profiles from Site U1385 documenting the regional vegetation and climatic changes. The pollen-based reconstructions show a larger forest optimum during the Holocene compared to MIS 11c and MIS 19c, putting into question their analogy in SW Europe. Pollen-based and model results indicate reduced MIS 11c forest cover compared to the Holocene primarily driven by lower winter precipitation, which is critical for Mediterranean forest development. Decreased precipitation was possibly induced by the amplified MIS 11c latitudinal insolation and temperature gradient that shifted the westerlies northwards. In contrast, the reconstructed lower forest optimum at MIS 19c is not reproduced by the simulations probably due to the lack of Eurasian ice sheets and its related feedbacks in the model. Transient experiments with time-varying insolation and CO2 reveal that the SW Iberian forest dynamics over the interglacials are mostly coupled to changes in winter precipitation mainly controlled by precession, CO2 playing a negligible role. Model simulations reproduce the observed persistent vegetation changes at millennial time scales in SW Iberia and the strong forest reductions marking the end of the interglacial "optimum".