Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Cation-exchange resin applied to paralytic Shellfish toxins depuration from Bivalves exposed to Gymnodinium catenatum
    Publication . Leal, Joana F.; Bombo, Gabriel; Amado, Patrícia; Pereira, Hugo; Lurdes S. Cristiano, M.
    The accumulation of marine biotoxins in shellfish and their consumption causes serious food safety problems, threatening human health and compromising the availability of protein-based food. It is thus urgent to develop methodologies for the detoxification of live bivalves, avoiding their economic and nutritional devaluation. In this context, we tested an adsorption mechanism of paralytic shellfish toxins (PST) based on a cation-exchange resin. The first studies using cultures of Gymnodinium catenatum (natural producers of PST) showed a decrease of about 80% in overall toxicity after 48 h. Interestingly, we found that the toxins are adsorbed differently, with toxins’ structural features playing a part in the adsorption capacity via steric hindrance, electronic effects, or the extent of positive charge density (e.g., dcSTX). The positive effect of the resin in accelerating PST clearance from live mussels (Mytilus edulis) is not evident when compared to resin-free clearance; nevertheless, relevant information could be gathered that will facilitate further in vivo studies. Several factors appear to be at play, namely the competition of natural substances (e.g., salts, organic matter) for the same binding sites, the blocking of pores due to interactions between molecules, and/or difficulties in resin absorption by mussels. Additionally, the present work revealed the ability of mussels to neutralize pH and proposes bioconversion reactions among the PST molecules.
  • Toxin profile of two Gymnodinium catenatum strains from Iberian Coastal Waters
    Publication . Leal, Joana F.; Bombo, Gabriel; Pereira, Hugo; Vicente, Bernardo; Amorim, Ana; Cristiano, Maria L. S.
    Gymnodinium catenatum has been the main species responsible for paralytic shellfish poisoning events along the Portuguese coast (Iberian Peninsula), causing bans on bivalve harvesting that result in huge economic losses. This work presents the characterization of two novel isolates of G. catenatum regarding their growth and toxin profiles. Laboratory growth experiments revealed that, although low growth rates were obtained during cultivation, the cell yields were high compared to those reported in the literature. Evaluation of the toxin profiles, by HPLC-FLD, essentially confirmed the typical composition of toxins of this regional population (Iberian Peninsula), namely, the absence or low representation of the toxins dcNEO, GTX1,4 and NEO and a higher ratio of the toxins C1,2, GTX6 and GTX5. However, the percentage of the identified toxins varied among the strains of this study (under the same isolation, growth, and analysis conditions), and also differed from that of other strains described in the literature. Interestingly, we found a comparatively high abundance of dcSTX in both strains, relative to the other toxins, and an unquantifiable amount of C3,4 toxins. In addition to the geographic relationship between toxin profiles, chemical conversions among toxins may explain some differences encountered in the toxin profiles of G. catenatum strains.