Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Hessian-polar context: a descriptor for microfilaria recognitionPublication . Al-Tam, Faroq; dos Anjos, Antonio; Shahbazkia, Hamid R.This paper presents a new effective descriptor for microfilaria. Since microfilaria is a thin elastic object, the proposed descriptor handles it locally. At each medial point of the microfilaria, the local structure of the microfilaria votes for a given shape. Accumulating these votes in the polar domain yields a rich descriptor. Experimental results show the effectiveness of the proposed approach when compared to a set of different well-established methods.
- Analysis of machine learning techniques applied to sensory detection of vehicles in intelligent crosswalksPublication . Lozano Domínguez, José Manuel; Al-Tam, Faroq; Mateo Sanguino, Tomás de J.; Correia, NoéliaImproving road safety through artificial intelligence-based systems is now crucial turning smart cities into a reality. Under this highly relevant and extensive heading, an approach is proposed to improve vehicle detection in smart crosswalks using machine learning models. Contrarily to classic fuzzy classifiers, machine learning models do not require the readjustment of labels that depend on the location of the system and the road conditions. Several machine learning models were trained and tested using real traffic data taken from urban scenarios in both Portugal and Spain. These include random forest, time-series forecasting, multi-layer perceptron, support vector machine, and logistic regression models. A deep reinforcement learning agent, based on a state-of-the-art double-deep recurrent Q-network, is also designed and compared with the machine learning models just mentioned. Results show that the machine learning models can efficiently replace the classic fuzzy classifier.
- A2PC: augmented advantage pointer-critic model for low latency on mobile IoT with edge computingPublication . Carvalho, Rodrigo; Al-Tam, Faroq; Correia, NoéliaAs a growing trend, edge computing infrastructures are starting to be integrated with Internet of Things (IoT) systems to facilitate time-critical applications. These systems often require the processing of data with limited usefulness in time, so the edge becomes vital in the development of such reactive IoT applications with real-time requirements. Although different architectural designs will always have advantages and disadvantages, mobile gateways appear to be particularly relevant in enabling this integration with the edge, particularly in the context of wide area networks with occasional data generation. In these scenarios, mobility planning is necessary, as aspects of the technology need to be aligned with the temporal needs of an application. The nature of this planning problem makes cutting-edge deep reinforcement learning (DRL) techniques useful in solving pertinent issues, such as having to deal with multiple dimensions in the action space while aiming for optimum levels of system performance. This article presents a novel scalable DRL model that incorporates a pointer-network (Ptr-Net) and an actor-critic algorithm to handle complex action spaces. The model synchronously determines the gateway location and visit time. Ultimately, the gateways are able to attain high-quality trajectory planning with reduced latency.