Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Climate-driven variability in the context of the water-energy nexus: a case study in southern Portugal
    Publication . C. Neves, Maria; Malmgren, Katherine; Neves, Rui
    Research on climate-driven variability in the water and energy sectors is required to drive adaptative policies to climate change and boost cross-sectorial synergies. This study addresses the role of the North Atlantic Oscillation (NAO) and East Atlantic pattern (EA) on the water-energy nexus in southern Portugal (Algarve region) from the point of view of water demand, instead of the usual point of view of hydropower production. Water at surface reservoirs and aquifers and solar and wind energy potentials (SP and WP, respectively) do not share the same dominant variability scales, but their interrelationships have implications for leveraging the use of renewable energy in the water sector, particularly through water pumping efficiency gains. Water availability is dominated by interannual fluctuations (70% of the total variance), whereas SP and WP are characterized by seasonal variability scales (98% and 41% of the total variance, respectively). At interannual scales NAO is the main driver of low-frequency variability governing cycles in the 6-8 -year band, whereas fluctuations in the 2-4 -year band are mainly associated with EA. Coupling or synchronizations between opposite phases of NAO and EA correspond to extremes in water availability. Minimum water levels in the summer and during droughts, corresponding to maximum energy demand in the water sector, are clearly connected to synchronized positive NAO and negative EA phases in the preceding winter. Recent advances in the seasonal and long-term predictability of NAO and EA climate patterns can help to improve drought resilience and groundwater sustainability and have huge potential benefits for the water-energy nexus in the Algarve region. Finally, to decarbonize freshwater supply in the Algarve, policy instruments will need to account for unregulated pumping which enables conditions for groundwater depletion, encourage energy and water management integration, and explore innovative energy investments.
  • Groundwater response to climate variability in Mediterranean type climate zones with comparisons of California (USA) and Portugal
    Publication . Malmgren, Katherine; Neves, Maria; Gurdak, Jason J.; Costa, Luis; Monteiro, José
    Aquifers are a fundamental source of freshwater, yet they are particularly vulnerable in coastal regions with Mediterranean type climate, due to both climatic and anthropogenic pressures. This comparative study examines the interrelationships between ocean-atmosphere teleconnections, groundwater levels and precipitation in coastal aquifers of California (USA) and Portugal. Piezometric and climate indices (1989-2019) are analyzed using singular spectral analysis and wavelet transform methods. Singular spectral analysis identifies signals consistent with the six dominant climate patterns: the Pacific Decadal Oscillation (PDO), the El Nino-Southern Oscillation (ENSO), and the Pacific/North American Oscillation (PNA) in California, and the North Atlantic Oscillation (NAO), the Eastern Atlantic Oscillation (EA) and the Scandinavian Pattern (SCAND) in Portugal. Lower-frequency oscillations have a greater influence on hydrologic patterns, with PDO (52.75%) and NAO (46.25%) on average accounting for the largest amount of groundwater level variability. Wavelet coherences show nonstationary covariability between climate patterns and groundwater levels in distinct period bands: 4-8 years for PDO, 2-4 years for ENSO, 1-2 years for PNA, 5-8 years for NAO, 2-4 years for EA and 2-8 years for SCAND. Wavelet coherence patterns also show that coupled climate patterns (NAO+ EA- and paired PDO and ENSO phases) are associated with major drought periods in both the Mediterranean climate zones.