Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Bioelectrical signal detection using conducting polymer electrodes and the displacement current method
    Publication . Inácio, Pedro; Mestre, Ana L G; Medeiros, C.R.; Asgarifar, Sanaz; ELAMINE, Youssef; Canudo, Joana; Santos, João; Bragança, José; Morgado, Jorge; Biscarini, Fabio; Gomes, Henrique L.
    Conducting polymer electrodes based on poly (3, 4 ethylenedioxythiophene): polystyrene sulfonate were used to record electrophysiological signals from autonomous cardiac contractile cells present in embryoid bodies. Signal detection was carried out by measuring the displacement current across the polymer/electrolyte double-layer capacitance, and compared with voltage detection. While for relatively low capacitance electrodes, the voltage amplification provides higher signal quality, and for high capacitive electrodes, the displacement current method exhibits a higher signal-to-noise ratio. It is proposed that the displacement current method combined with high capacitive polymer-based electrodes is adequate to measure clusters of cells and whole organs. Our approach has a great potential in fundamental studies of drug discovery and safety pharmacology.
  • Cartilage acidic protein 1 promotes increased cell viability, cell proliferation and energy metabolism in primary human dermal fibroblasts
    Publication . Letsiou, Sophia; Félix, Rute; Cardoso, João CR; L, Anjos; Mestre, Ana L G; H, Gomes; Power, Deborah
    Cartilage acidic protein 1 (CRTAC1) is an extracellular matrix protein of human chondrogenic tissue that is also present in other vertebrates, non-vertebrate eukaryotes and in some prokaryotes. The function of CRTAC1 remains unknown but the protein's structure indicates a role in cell-cell or cell-matrix interactions and calcium-binding. The aim of the present study was to evaluate the in vitro effects of hCRTAC1-A on normal human dermal fibroblasts (NHDF). A battery of in vitro assays (biochemical and PCR), immunofluorescence and a biosensor approach were used to characterize the protein's biological activities on NHDF cells in a scratch assay. Gene expression analysis revealed that hCRTAC1-A protein is associated with altered levels of expression for genes involved in the processes of cell proliferation (CXCL12 and NOS2), cell migration (AQP3 and TNC), and extracellular matrix-ECM regeneration and remodeling (FMOD, TIMP1, FN1) indicating a role for hCRTAC1-A in promoting these activities in a scratch assay. In parallel, the candidate processes identified by differential gene transcription were substantiated and extended using Electric cell-substrate impedance sensing (ECIS) technology, immunofluorescence and cell viability assays. Our findings indicate that hCRTAC1-A stimulated cell proliferation, migration and ECM production in primary human fibroblasts in vitro. (C) 2020 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.