Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Improved mapping functions for atmospheric refraction correction in SLR
    Publication . Mendes, VB; Prates, Gonçalo; Pavlis, EC; Pavlis, DE; Langley, RB
    [1] We present two new mapping functions (MFs) to model the elevation angle dependence of the atmospheric delay for satellite laser ranging (SLR) data analysis. The new MFs were derived from ray tracing through a set of data from 180 radiosonde stations globally distributed, for the year 1999, and are valid for elevation angles above 3degrees. When compared against ray tracing of two independent years of radiosonde data (1997-1998) for the same set of stations, our MFs reveal submillimetre accuracy for elevation angles above 10degrees, representing a significant improvement over other MFs, and is confirmed in improved solutions of LAGEOS and LAGEOS 2 data analysis.
  • An evaluation of the accuracy of models for the determination of the weighted mean temperature of the atmosphere
    Publication . Prates, Gonçalo; Mendes, V. B.; Santos, L.; Langley, R. B.
    The estimates of the zenith wet delay resulting from the analysis of data from space techniques, such as GPS and VLBI, have a strong potential in climate modeling and weather forecast applications. In order to be useful to meteorology, these estimates have to be converted to precipitable water vapor, a process that requires the knowledge of the weighted mean temperature of the atmosphere, which varies both in space and time. In recent years, several models have been proposed to predict this quantity. Using a database of mean temperature values obtained by ray-tracing radiosonde profiles of more than 100 stations covering the globe, and about 2.5 year’s worth of data, we have analyzed several of these models. Based on data from the European region, we have concluded that the models provide identical levels of precision, but different levels of accuracy. Our results indicate that regionally-optimized models do not provide superior performance compared to the global models.